SEARSPORT HARBOR SEARSPORT, MAINE NAVIGATION IMPROVEMENT PROJECT

TECHNICAL REPORT 3

FIELD SAMPLING AND SEDIMENT TESTING

September 2008

OF ENGINEERS New England District

Contract No. DACW33-03-D-0004 Delivery Order No. 41 September 30, 2008

Final Report FIELD SAMPLING AND SEDIMENT TESTING

Searsport Harbor Federal Navigation Project Searsport, Maine

[This page left intentionally blank]

FINAL REPORT

for

Field Sampling and Sediment Testing – Searsport Harbor, Searsport, Maine

Submitted to:

Department of the Army U.S. Army Corps of Engineers North Atlantic Division New England District

Contract Number: DACW33-03-D-0004 Delivery Order Number: DO No. 41

Prepared by:

Battelle 397 Washington Street Duxbury, MA 02332 (781) 934-0571

September 30, 2008

Battelle The Business of Innovation [This page left intentionally blank]

TABLE OF CONTENTS

1.0 INTRODUCTION	.3
1.1 Project Description	.3
1.2 Scope of Work	.3
1.3 Organization of this Report	.3
2.0 MATERIALS AND METHODS	4
2.1 Sample Collection/Processing	.4
2.1.1 Sediment Core Collections	.4
2.1.2 Reference Sediment Grab Collections	.6
2.1.3 Rinsate Blank Sampling	.7
2.1.4 Sediment Processing and Subsampling	.7
2.2 Physical and Chemical Testing	.7
2.2.1 Geotechnical Analysis	.7
2.2.2 Organic Contaminants	.8
2.2.2.1 Sediments	.8
2.2.2.2 Rinsate Blanks	10
2.2.3 Metals1	10
2.2.3.1 Sediments1	0
2.2.3.2 Rinsate Blanks	0
2.3 Quality Assurance/Quality Control Procedures	1
2.3.1 Measurement Quality Objectives	1
2.3.2 Analytical Reporting	12
2.3.3 Chain of Custody	12
2.3.4 Data Audits/QA Review	12
2.3.5 Protocol Deviations	12
2.3.5.1 Field Survey	12
2.3.5.2 Laboratory Testing	12
3.0 RESULTS1	13
3.1 Geotechnical Analysis	13
3.2 Sediment Chemistry	15
3.2.1 Total Organic Carbon	15
3.2.2 PCBs and Pesticides	15
3.2.3 Polycyclic Aromatic Hydrocarbons	15
3.2.4 Metals	15
3.3 Quality Control	17
4.0 REFERENCES	17

TABLES

Table 2-1. Cross-reference for Station ID and Individual Sample ID.	6
Table 2-2. List of Parameters Analyzed and Laboratory Achieved Detection Limits	9
Table 2-3. Measurement Quality Objectives.	11
Table 2-4. Data Reporting Qualifiers	12
Table 3-1. Summary of Geotechnical Results for Sediment Cores and Reference Samples	14
Table 3-2. Summary of Sediment Organic Contaminant (µg/Kg dry weight) and Metals	
(µg/g dry weight) Data.	16

FIGURES

ATTACHMENTS

Attachment A: Draft Field Sampling Report

- Attachment B: Composite Preparation Logs and Custody Records
- Attachment C: Sediment Chemistry Data

Attachment D: Completeness Checklist

1.0 INTRODUCTION

1.1 Project Description

The Corps of Engineers, New England District (NAE) is evaluating sediments proposed for dredging and disposal from the Searsport Harbor Federal Navigation Project in Searsport, Maine. The work requested is to assist NAE in gathering physical and chemical data for analyzing the environmental impacts associated with proposed maintenance and improvement dredging of sediments and other substrate material in Searsport Harbor. The data will be used to support NAE's suitability determination for open-water placement of the dredged material under Section 404 of the Clean Water Act. All methods employed were consistent with the National Guidance provided in *Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S.*—*Testing Manual* (EPA/USACE 1998), also known as the "Green Book," and the Regional Testing Manual Final Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Discharge in Book," and the Regional Testing Manual Final Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Discharge 2004).

1.2 Scope of Work

The project scope of work consisted of sediment cores collected from each of the 10 designated sampling locations within Searsport Harbor and sediment grab samples from two reference (dredged material disposal) locations: the historic Belfast Bay Disposal Site (BBDS) and the alternative Penobscot Disposal Site (PDS). The Rockland Disposal Site will also be considered for dredge material disposal using known data for this site, and no new samples from this site were collected as part of this Scope of Work. Sediment samples were collected for physical and chemical analyses.

Field Collections — TG&B performed all sediment coring activities under the supervision of a Battelle Chief Scientist.

Physical and Chemical Analyses — Initial grain size (GS) analysis of all 10 sediment cores plus the two reference sites was performed by Applied Marine Sciences (AMS) of League City, Texas. AMS also conducted Atterberg Limits testing on select subsamples of sediment cores and total organic carbon (TOC) analysis on sediment composites and the reference site sediments. Battelle conducted metals and organic (polychlorinated biphenyls (PCBs) as congeners, polynuclear aromatic hydrocarbons (PAHs), and chlorinated pesticides) analyses on sediment composites and the reference site sediments.

1.3 Organization of this Report

This report was prepared in accordance with the requirements outlined in the NAE Statement of Work (SOW) for Searsport Harbor, Maine. This report is organized in four sections and four appendices. Section 1.0 is an introduction and describes the project and scope of work. A summary of the materials and methods used in support of this project is presented in Section 2.0. Results of physical and chemical testing for the sediment samples are discussed in Section 3.0. References are provided in Section 4.0. Complete test results are provided as appendices to this report: Attachment A contains the Draft Field Sampling Report and field custody records for Searsport Harbor, and Attachment B contains the sediment composite preparation logs and custody forms. Attachment C contains results from initial GS testing, Atterberg Limits, TOC,

organic contaminant, and metals testing. Finally, Attachment D contains the Completeness Checklist.

2.0 MATERIALS AND METHODS

This section summarizes the methods used for sample collection, and physical and chemical testing of sediment samples for the Searsport Harbor Federal Navigation Project. Sample collection and analytical activities generally followed the project Sampling and Analysis Plan (SAP) (Battelle 2008); deviations to the SAP are documented in Section 2.3.5.

2.1 Sample Collection/Processing

On April 30 and May 1, 2008, sediment core samples were collected at each of 10 stations in Searsport Harbor, Maine (Figure 2-1). At each of the 10 locations, vibracore or push core samples were collected to the target project depth. Sampling continued at each location until the volume requirements specified in the Sampling and Analysis Plan (SAP) (Battelle 2008) were met. On May 2, 2008, bulk sediment samples were collected in triplicate from two reference locations (i.e., BBDS and PDS) within Penobscot Bay, Maine (Figure 2-1). All samples were returned to Battelle Duxbury for compositing, homogenization, and sub-sampling.

Sediment collections, rinsate blank collections, and sample processing methods are summarized below. Complete details on the survey/sampling methods can be found in the Field Sampling Report (Attachment A).

2.1.1 Sediment Core Collections

Vibracore samples were collected to the depths specified in the SOW and summarized in the Searsport Harbor SAP (Battelle 2008). Battelle and its subcontractor, TG&B, were responsible for collecting all vibracore samples.

On April 30 and May 1, 2008, core samples were collected at each of 10 stations (Figure 2-1) using a vibracorer to maximize efficiency and core recovery. Three sampling locations were established within the existing Federal Navigation Project limits (E, F, G) and seven locations were established within the proposed project limits and outside of the existing project (A, B, C, D, H, I, J). Target core depths (ranging from 3 to 10 feet) as defined in the SAP (Battelle 2008) were based on estimated refusal depths resulting from previous boring and geophysical studies.

Figure 2-1. Sampling Locations within Searsport Harbor and Reference Locations.

In some circumstances, the silty maintenance material was better retained using a push core method (Stations H and I). Detailed core sampling logs are provided as an appendix to the Draft Field Sampling Report (Attachment A). All cores were captured in 3-5/8 inch (internal diameter) pre-rinsed, polycarbonate (LexanTM) liners. Each acceptable core was capped on the bottom while horizontal, positioned vertically and capped on top, labeled, and stored upright. During all field activities samples were stored on the vessel in 30-gallon barrels filled with ice. Throughout the survey, samples were transferred nightly into a refrigerator truck and stored at $4^{\circ}C \pm 2^{\circ}C$ until returning from the field to Battelle. Upon arrival at Battelle, core samples were placed in a secure, continuously monitored cold room ($4^{\circ}C \pm 2^{\circ}C$) until processing (see Section 2.1.4).

Sampling Area	Station ID	Sample Type	Sample ID
Searsport Harbor	E		HAC-005
(within existing project	F		HAC-006
limits)	G		HAC-007
	А		HAC-001
	В	Sodimont Coro	HAC-002
Searsport Harbor	С	Sediment Core	HAC-003
(within proposed project	D		HAC-004
nroiect)	Н		HAC-008
projecty	I		HAC-009
	J		HAC-010
	BBDS (1 of 3)		HAC-012
Belfast Bay Disposal Site	BBDS (2 of 3)		HAC-013
(relefence)	BBDS (3 of 3)	Sodimont Crob	HAC-014
Demokrant Diseased Oite	PDS (1 of 3)	Sediment Grab	HAC-015
(reference)	PDS (2 of 3)		HAC-016
(relefence)	PDS (3 of 3)		HAC-017
Searsport Harbor	NA	Core Rinsate Blank	HAC-011
Belfast Bay	NA	Grab Rinsate Blank	HAC-018
Composite 1	A, B, C		HAC-019
Composite 2	D, F	Sodimont Composito	HAC-020
Composite 3	E, G, H, I	Sediment Composite	HAC-021
Composite 4	J		HAC-022

Table 2-1. Cross-reference for Station ID and Individual Sample ID.

2.1.2 Reference Sediment Grab Collections

Bulk sediment samples were collected in triplicate on May 2, 2008 from two reference locations (i.e., BBDS and PDS) within Penobscot Bay, Maine. Detailed station logs are provided as Attachment A. Bulk sediment was collected using a Kynar coated 0.1-m^2 Van Veen grab sampler; sediment was placed into labeled, 3.5-gallon polyethylene buckets, transferred into a refrigerator truck, and stored at 4°C ± 2°C until returning from the field to Battelle. Upon arrival at Battelle, core samples were placed in a secure, continuously monitored cold room (4°C ± 2°C) until processing (Section 2.1.4).

2.1.3 Rinsate Blank Sampling

One rinsate blank was collected for each type of sampling apparatus: the sediment grab sampler and vibracorer. Rinsate blanks were stored cold ($4^{\circ}C\pm 2^{\circ}C$) and transported to the appropriate laboratory for chemical analysis.

- **Coring** All materials to which the sediment was exposed (e.g., core liners) were rinsed with deionized water. This rinsate was collected for both organics (PAHs, PCB/pesticides) and metals.
- **Grab sampling**—The grab sampler to which sediment was exposed was rinsed with deionized water, and rinsate was collected for both organics (PAHs, PCB/pesticides) and metals.

2.1.4 Sediment Processing and Subsampling

Sediment core samples were hand-delivered to the Battelle Duxbury, Massachusetts laboratory on May 3, 2008 and maintained in a secure, cold room $(4^{\circ}C\pm 2^{\circ}C)$ until processing the following week. Sediment core samples were processed on May 5 and May 6, 2008. Cores were cut laterally using electric tin snips and were generally characterized in terms of sediment type (silt, sand, and clay), color, odor, and horizons. Digital photographs were taken of each core prior to sub-sampling (Attachment A). If a horizon was observed, subsamples were taken from the maintenance layer (top) and parent layer (bottom) after homogenizing the subsections. If no horizon was present, subsamples were taken from the surface (0-1') and underlying layer (1-2') after homogenizing the subsections. Aliquots of these subsamples, in addition to the reference samples, were sent to AMS for initial GS testing on May 6, 2008. The core processing logs included in the Draft Field Sampling Report (Attachment A) provide a detailed record of core visualization and sub-sampling efforts. Chains of Custody forms for all samples are also provided in Attachment A.

On May 14, 2008, the sediment composites (Table 2-1) were prepared using the compositing scheme identified by NAE, which was determined based on a review of the initial GS results. Composites were prepared by homogenizing the subsamples from the top two feet of each assigned station and combining the mixed sediment in equal portions to a HDPE bucket (Attachment B). Four composite sediment samples were then sub-sampled for TOC, organic contaminants, and trace metals testing, and were shipped to the performing laboratory on May 14 and 15, 2008. Splits were also collected for archival.

2.2 Physical and Chemical Testing

Sediment core and reference site samples received physical testing for geotechnical parameters including grain size distributions, percent moisture, and specific gravity; selected sediment core samples also received Atterberg Limits analysis. Sediment composite samples and reference site samples received chemical testing, including TOC, PCB, chlorinated pesticide, PAH, and metals analyses.

2.2.1 Geotechnical Analysis

Sediment samples from the 10 Searsport Harbor stations (Stations A through J; Figure 2-1) were analyzed for gravel, sand, silt, and clay according to ASTM D422. Composite harbor and reference site sediment samples were analyzed for full grain size distribution (ASTM D422),

water content (ASTM D2216), and visual classification (ASTM D2487). Results are reported on a percent dry-weight basis, and include distribution curves. Analysis was performed as quick-turn-around and results were available within five days of receipt of samples at the laboratory. Composite harbor and reference site sediment samples were analyzed for TOC according to EPA SW846 Method 9060A. All samples were analyzed in duplicate for TOC. Results are reported on a percent dry-weight basis.

Atterberg Limits were performed on a subset of sediment cores identified by NAE following ASTM Method D4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. Briefly, the sample was processed to remove material retained on the No. 40 sieve. The liquid limit was determined over a range of water contents and the data were plotted from which the liquid limit is determined. The plastic limit was determined by drying the sample to the point where a 3.2 mm thread crumbles. The plasticity index was calculated as the difference between the liquid limit and the plastic limit. Specific gravity was measured according to ASTM D854. Results for specific gravity were reported on a dry-weight basis.

2.2.2 Organic Contaminants

2.2.2.1 Sediments

The four composite harbor and six reference site (2 locations x 3 replicates) sediment samples were extracted and analyzed for PCBs, pesticides and PAHs according to general NS&T methodologies (Peven and Uhler 1993). Sediment samples were prepared for analysis according to Battelle SOP 5-192, *Soil/Sediment Extraction for Trace Level Semi-Volatile Organic Contaminant Analysis*). Briefly, approximately 30 g of well-mixed, wet sediment was added to the extraction vessel, fortified with surrogate internal standards (SIS), and extraction solvent (methylene chloride). Samples were serially extracted three times using shaker table techniques. The combined extract was dried over anhydrous sodium sulfate, reduced in volume and cleaned using activated copper, alumina column, and high performance liquid chromatography (HPLC) cleanup. All sample extracts (sediment and rinsate blanks) were solvent exchanged into hexane, fortified with internal standards (IS), and split 50:50 for concurrent PCB/pesticide and PAH analyses.

The split extract for PCB/pesticide analysis was analyzed using gas chromatography/electron capture detection (GC/ECD) according to Battelle SOP 5-128, *Identification and Quantification of Polychlorinated Biphenyls (By Congener and Aroclor) and Chlorinated Pesticides by Gas Chromatography/Electron Capture Detection*. The split extract for PAHs was analyzed in the selected ion monitoring (SIM) mode using gas chromatography/mass spectrometry (GC/MS) according to Battelle SOP 5-157, *Identification and Quantification of Semi-Volatile Organic Compounds (SVOC) by Gas Chromatography/Mass Spectrometry*. A list of target analytes and detection limits is presented in Table 2-2. Concentrations of target PCBs, pesticides and PAHs were determined by the method of internal standards, using the IS. Sediment results are reported in microgram per kilogram (µg/kg) dry weight.

Total PCB is reported as two times the sum of the target congeners (Table 2-2); one half the method detection limit (MDL) was used for non-detects.

Sediment samples were re-extracted in the laboratory for PAHs because some QC results were unacceptable. The percent recovery of selected low molecular weight (LMW) surrogate compounds was near or below the lower acceptable limit of 30% (Table 2-3). In addition, results from the SRM analysis indicated a number of compounds that were under-recovered compared to the certified value. QC results from the re-extracted samples were acceptable and the re-extract data are provided in this report.

	Parameter	MDL	RL	Parameter		MDL	RL
Polycyclic Aromatic		µg/kg DW	µg/kg DW	Po	lychlorinated	µg/kg DW	µg/kg DW
Ну	drocarbons	(ppb)	(ppb)	Bip	phenyls	(ppb)	(ppb)
	Naphthalene	0.27	0.74		Cl2(8)*	0.16	0.36
	Acenaphthylene	0.18	0.74		Cl3(18)*	0.06	0.36
	Acenaphthene	0.24	0.74		Cl3(28)*	0.07	0.36
	Fluorene	0.16	0.74		Cl4(44)*	0.06	0.36
	Anthracene	0.44	0.74		Cl4(49)	0.06	0.36
	Phenanthrene	0.26	0.74		Cl4(52)*	0.06	0.36
	Fluoranthene	0.57	0.74		Cl4(66)*	0.73	0.36
	Pyrene	0.55	0.74		CI5(87)	0.07	0.36
	Benzo(a)anthracene	0.3	0.74		Cl5(101)*	0.06	0.36
	Chrysene	0.4	0.74		Cl5(105)*	0.1	0.36
	Benzo(b)fluoranthene	0.27	0.74		Cl5(118)*	0.08	0.36
	Benzo(k)fluoranthene	0.31	1.47		Cl6(128)*	0.08	0.36
	Benzo(a)pyrene	0.25	0.74		Cl6(138)*	0.07	0.36
	Indeno(1,2,3-cd)pyrene	0.18	0.74		Cl6(153)*	0.08	0.36
	Dibenz(a,h)anthracene	0.15	0.74		CI7(170)*	0.09	0.36
	Benzo(g,h,i)perylene	0.23	0.74		CI7(180)*	0.09	0.36
Ch	Iorinated Pesticides	µg/kg DW	µg/kg DW		CI7(183)	0.08	0.36
	4,4'-DDD	0.08	0.36		CI7(184)	0.09	0.36
	4,4'-DDE	0.08	0.36		CI7(187)*	0.08	0.36
	4,4'-DDT	0.08	0.36		Cl8(195)*	0.08	0.36
	Aldrin	0.06	0.36		Cl9(206)*	0.08	0.36
	a-chlordane	0.25	0.36		CI10(209)*	0.1	0.36
	g-chlordane	0.08	0.36	Ме	tals	µg/g DW	µg/g DW
	Lindane	0.06	0.36		Arsenic	0.18	0.5
	cis-nonachlor	0.08	0.36		Cadmium	0.0044	0.01
	trans-nonachlor	0.24	0.36		Chromium	0.02	0.07
	Oxychlordane	0.08	0.36		Copper	0.058	0.2
	Dieldrin	0.17	0.36		Lead	0.25	0.7
	Endosulfan I	0.1	0.36		Mercury	0.002	0.007
	Endosulfan II	0.09	0.36		Nickel	0.023	0.07
	Endrin	0.07	0.36		Zinc	0.21	0.7
	Heptachlor	0.08	0.36				
	Heptachlor epoxide	0.08	0.36	Ge	otechnical	% DW	% DW
	Hexachlorobenzene	0.07	0.36		TOC	0.01	0.03
	Methoxychlor	0.09	0.36		Grain Size	0.01	0.03
	Toxaphene	3.67	28.75		% Moisture	1	3

Table 2-2. List of Parameters Analyzed^(a) and Laboratory Achieved Detection Limits.^(b)

MDL, method detection limit; RL, reporting limit; µg/kg, microgram per kilogram, DW = dry weight; %, percent.

^(a) Parameters analyzed were in accordance with the requirement specified in the project SAP (Battelle 2008a).

^(b) MDLs reported for pesticides/PCBs, PAHs, and metals were based the 2008 MDL studies.

* PCB congener used in calculation of total PCB.

2.2.2.2 Rinsate Blanks

Two rinsate blank samples were extracted for PCBs, chlorinated pesticides, and PAHs according to Battelle SOP 5-200, *Water Extraction for Trace Level Semi-Volatile Organic Contaminant Analysis*. Approximately 1-L of each water sample was fortified with a set of SIS, and extracted three times with methylene chloride using separatory funnel techniques. The combined extract was dried over anhydrous sodium sulfate and concentrated to approximately 1-mL. The extract was fortified with a set of IS and split 50:50 for concurrent PCB/pesticide and PAH analyses.

PCB, pesticide, and PAH analyses were performed following methods described in Section 2.2.2.1. All target compounds were quantified by the method of internal standards using IS and results are reported in nanograms per liter (ng/L).

2.2.3 Metals

2.2.3.1 Sediments

The four composite sediment and six reference site samples (2 locations x 3 replicates) were analyzed for eight metals: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn). Detection limits for each metal are provided in Table 2-2. Samples were freeze-dried and homogenized using a ball-mill prior to digestion according to Battelle SOP MSL-C-003, *Percent Dry Weight and Homogenizing Dry Sediment, Soil and Tissue*. Sediment samples were digested in accordance with Battelle SOP MSL-I-006, *Mixed Acid Sediment Digestion*. An approximately 200-mg (dry weight) aliquot of each sample was combined with nitric and hydrochloric acids (aqua regia) in a Teflon bomb and heated in an oven at 130°C (±10°C) for a minimum of eight hours. After heating and cooling, deionized water was added to the sediment digestate to achieve analysis volume. Digestates were submitted for analysis by three methods.

Digested samples were analyzed for Hg using cold-vapor atomic absorption spectroscopy (CVAA) according to Battelle SOP MSL-I-034, *Total Mercury in Tissues and Sediments by Cold Vapor Atomic Absorption*. This procedure is based on modification of EPA Method 7473.

Digested samples were analyzed for As and Cd using inductively coupled plasma-mass spectrometry (ICP-MS) according to Battelle SOP MSL-I-022, *Determination of Elements in Aqueous and Digestate Samples by ICP/MS*. The base methods for this procedure are EPA Method 1638 and EPA Method 6020 with adaptations for the analysis of trace level metals in digested sediment and tissue samples.

Digested samples were analyzed for all other metals using inductively coupled plasma optical emissions spectroscopy (ICP-OES) according to Battelle SOP MSL-I-033, *Determination of Elements in Aqueous and Digestate Samples by ICP-OES*. This procedure is based on two methods modified and adapted for analysis of low level samples: EPA Method 6010B and 200.7.

All metals results are reported in microgram per gram ($\mu g/g$) dry weight.

2.2.3.2 Rinsate Blanks

The equipment rinsate blank was analyzed for As, Cd, Cr, Cu, Pb, Hg, Ni, and Zn. The samples were submitted for analyses by two methods. Samples were analyzed for total Hg by cold vapor atomic fluorescence (CVAF) in accordance with Battelle SOP MSL-I-013; *Total Mercury in Aqueous Samples by CVAF* based on EPA Method 1631 Revision E. Samples were analyzed for

all other metals by ICP-MS in accordance with Battelle SOP MSL-I-022. All data are reported in units of microgram per liter (μ g/L) for each sample.

2.3 Quality Assurance/Quality Control Procedures

Field and analytical activities used in the collection and analysis of sediments for physical and chemical parameters followed approved SOPs, referenced agency methods, or the SAP (Battelle 2008). Deviations are documented in Section 2.3.5.

Each batch of sediment samples for physical and chemical testing was prepared with a routine set of quality control (QC) samples to monitor data quality in terms of accuracy and precision. QC samples included a procedural blank, laboratory control sample (LCS), matrix spike (MS), matrix spike duplicate (MSD), sample duplicate (DUP), and standard reference material (SRM), where available.

2.3.1 Measurement Quality Objectives

Project specific Measurement Quality Objectives (MQOs), against which all data from this project were evaluated, are presented in Table 2-3. Physical and chemical data were evaluated against the MQOs, and data reporting qualifiers (Table 2-4) were applied when the analytical MQOs were exceeded.

QC Parameter	Measure or Acceptance Criteria	Corrective Action
	Blank: <5×MDL	Reextract, reanalyze, and/or blank subtract ^e ; document corrective actions
Accuracy LCS	<i>Organics:</i> 50 to 120% R <i>Metals:</i> 75 to 125% R	Reextract, reanalyze, and/or document and justify; all corrective actions documented
MS/MSD	<i>Organics:</i> 50 to 120% R ^b <i>Metals:</i> 75 to 125% R ^b	As above
SRM	<i>Organics:</i> \leq 30% PD ^c from target concentration plus the 95% confidence interval. <i>Metals:</i> Within 25% PD ^d from certified value.	As above
SIS	<i>Organics:</i> 30 - 150% R	As above
Precision Replicates	Organics and Metals: MS/MSD: \leq 30% RPD ^b between % recoveries Sample Duplicate: \leq 30% RPD ^d between values Grain Size: RPD \leq 25% TOC: RPD \leq 30%	As above

Table 2-3. Measurement Quality Objectives.^a

MDL: method detection limit; PD: percent difference; R: recovery; RPD: relative percent difference; LCS: laboratory control sample; MS/MSD: matrix spike/matrix spike duplicate; SRM: standard reference material; SIS: surrogate internal standard; ^a Quality control samples are based on an analytical batch size of 20.

^b Analyte concentration in MS must be $>5\times$ background concentration to be used for data quality assessment.

^c PD determined using surrogate corrected data. PD only determined for certified analytes.

^d For analytes detected at concentrations $>10 \times$ MDL.

^eBlank subtracting is applicable to metals only, and would require the NAE project manager's consultation and approval.

Data Qualifier	Definition
J	Analyte detected at level less than the laboratory achieved detection limit (i.e., ssRL for organics and RL for metals).
E	Estimate, result > highest concentration level in the calibration.
В	Analyte concentration found in the sample at a concentration <5x the level found in the procedural blank (the qualifier is only applied to the affected field samples).
U	Not detected above laboratory achieved method detection limit; MDL reported
N	QC value outside the accuracy or precision criteria goal
n	QC value outside the accuracy or precision data quality objective, but meets contingency criteria.

Table 2-4. Data Reporting Qualifiers.

2.3.2 Analytical Reporting

Sample results were evaluated against achieved laboratory detection limits, including MDLs and reporting limits (RLs). Chemical contaminants either not detected or detected at a concentration below the MDL were reported as the RL (sample-specific RLs used for organic contaminants) and U flagged. Chemical contaminants detected at a concentration above the MDL, but below the RL, were reported and J flagged.

2.3.3 Chain of Custody

Sample custody forms accompanied all samples from the field to the laboratory and between laboratories. Copies of sample custody forms and laboratory receipts are provided in Appendices A and B.

2.3.4 Data Audits/QA Review

All data received internal verification and validation following established procedures at the laboratory where the data were generated. QA/QC narratives and QA/QC checklists as required by the RIM (EPA/USACE 2004) are provided with the sample data in Attachment C. The QA/QC narratives include a discussion of the QC results; a description of MQO exceedances; and the impact, if any, the exceedances may have on the overall field sample data.

2.3.5 Protocol Deviations

2.3.5.1 Field Survey

During core sampling at Stations H and I, initial attempts resulted in poor recovery rates (<60%). Based on initial assessment of sediments and site conditions, the field crew switched from a vibracore method to a push core method in an effort to increase surface layer retention. Sampling efforts were successful and recovery rates were increased to acceptable levels.

2.3.5.2 Laboratory Testing

There were no protocol deviations; all analytical activities followed the project SAP (Battelle 2008a).

3.0 RESULTS

This section summarizes results obtained from the physical and chemical analysis of the sediment samples collected from Searsport Harbor, Maine. Complete test results are reported in Attachment C.

In general, laboratory QC data were within the MQO acceptance criteria and the quality of the data is acceptable. Exceedances to the MQOs are discussed in the QA/QC narratives provided with the sample data (Attachment C), and are summarized below in Section 3.4.

3.1 Geotechnical Analysis

Individual sediment core subsamples and reference site sediment samples were analyzed for grain size distribution, percent moisture, and specific gravity. Selected samples were also analyzed for Atterberg Limits. Sample results are summarized in Table 3-1, and complete test results are provided in Attachment C. Initial grain size data was subsampled by foot from the surface (0-1') and underlying layer (1-2') at each station, except at station F. At station F, a horizon was present at 3.6 feet. After discussion with NAE, station F was subsampled for initial grain size data at 0 - 1.9 feet, 1.9 - 3.6 feet, and 3.6 to 7.3 feet. The initial grain size data were used by NAE to develop a compositing scheme, which is clarified in the first column of Table 3-1.

Grain size data for three of the four harbor composite samples showed that sediments were finegrained, comprised predominantly of silt and clay (>90%) with smaller amounts of fine and medium sands. Sediment at Station J was coarser, with roughly equal distributions of medium and fine sands, silt, and clay fractions. This station was located farthest outside the existing navigation project limits and was the most inshore of all stations. The BBDS and PDS reference station samples were comprised predominately of silt (42-45%) and clay (55-56%). As expected, sediment grain size generally corresponded well with TOC for the four harbor composite and BBDS and PDS reference sediment samples. For example, most of the composites with predominantly fine-grained sediments contained higher percentages of TOC, while Composite 4 which contained mostly gravel and sand had a much lower percentage of TOC.

Comp #	Sample ID	Description	Penetration Depth (ft)	% Gravel	% Coarse Sand	% Med Sand	% Fine Sand	% Silt	% Clay	% Water Content	Specific Gravity	Liquid Limit	Plastic Limit	Plasticity Index	
	114.0.004		Ctation A	0-1	0.00	0.00	0.15	0.53	56.08	43.24	145	2.64	116	49	67
	HAC-001	Station A	1-2	0.00	0.05	0.44	0.59	39.34	59.58	118	2.68	NR	NR	NR	
1		Station P	0-1	0.90	0.17	0.51	1.00	42.48	54.94	126	2.64	NR	NR	NR	
		Station B	1-2	0.00	0.17	0.38	1.09	40.81	57.55	123	2.66	105	43	62	
		Station C	0-1	0.00	0.16	0.37	0.87	44.15	54.45	127	2.65	103	43	60	
	TAC-003	Station C	1-2	0.00	0.49	0.95	1.66	44.18	52.72	123	2.67	NR	NR	NR	
		Station D	0-1	0.00	0.00	0.47	1.17	49.87	48.49	146	2.66	111	46	65	
	HAC-004	Station D	1-2	2.09	0.52	0.61	1.47	45.26	50.05	112	2.67	104	44	60	
2			0-1.9	0.00	0.00	0.10	0.73	56.16	43.01	185	2.61	115	45	70	
	HAC-006	Station F	1.9-3.6	0.00	0.28	0.24	0.94	50.39	48.15	115	2.67	NR	NR	NR	
			3.6-7.3	0.00	0.00	0.11	0.48	40.86	58.55	29	2.78	NR	NR	NR	
		Station E	0-1	0.00	0.65	2.28	3.12	60.30	33.65	69	2.68	NR	NR	NR	
	HAC-005	Station E	1-2	1.51	1.08	3.77	4.59	60.86	28.19	94	2.57	73	40	33	
	HAC-007	Station G	0-1	0.00	0.00	0.06	5.09	69.62	25.23	26	2.72	NR	NR	NR	
2			1-2	0.00	0.16	0.11	4.37	67.04	28.32	23	2.72	NR	NR	NR	
3		Station H	0-1	0.00	0.19	0.61	3.77	49.48	45.95	114	2.62	92	39	53	
			1-2	0.00	0.14	0.64	2.41	48.86	47.95	113	2.67	97	41	56	
			0-1	0.00	0.24	0.54	1.66	51.71	45.85	117	2.67	NR	NR	NR	
	TAC-009	Station	1-2	0.00	0.28	1.61	6.14	54.93	37.04	116	2.65	94	39	55	
4		Ctation I	0-1	3.08	6.78	22.49	28.37	30.98	8.30	57	2.63	NR	NR	NR	
4	HAC-010	Station J	1-2	27.88	4.89	19.91	20.96	15.42	10.94	30	2.69	NR	NR	NR	
	HAC-012		0.5	0.00	0.07	0.12	0.06	47.52	52.23	164	2.66	NR	NR	NR	
NA	HAC-013	BBDS	0.5	5.08	0.08	0.12	0.12	37.85	56.75	155	2.66	NR	NR	NR	
	HAC-014		0.5	0.00	0.00	0.04	0.10	41.30	58.56	159	2.64	NR	NR	NR	
	HAC-015		0.5	0.00	0.00	0.05	0.41	40.64	58.90	174	2.65	NR	NR	NR	
NA	HAC-016	PDS	0.5	0.00	0.00	0.05	0.42	50.72	48.81	165	2.68	NR	NR	NR	
	HAC-017		0.5	0.00	0.00	0.08	0.47	43.16	56.29	166	2.68	NR	NR	NR	
NR anal	vsis Not Rea	uired according to	o the project scor	e of work											

 Table 3-1. Summary of Geotechnical Results for Sediment Cores and Reference Samples.

Battelle The Business of Innovation September 30, 2008 Page 14 of 18

3.2 Sediment Chemistry

Sediment composite and reference site samples were analyzed for TOC, PCB congeners, chlorinated pesticides, PAHs, and trace metals. Complete test results are provided in Attachment C of this report.

3.2.1 Total Organic Carbon

The harbor composite and reference samples contained moderate levels of TOC, ranging from 0.97% to 2.74% (Attachment C). TOC values were generally lower in sediment located in the northwest region of the study area. Station J had the lowest TOC values and BBDS had the highest TOC values.

3.2.2 PCBs and Pesticides

PCBs and pesticides were generally undetected or detected at low levels among the four composite samples from Searsport Harbor and reference samples (Table 3-2, Attachment C). Detected concentrations of PCBs and pesticides were well below sediment quality guidelines (Long *et al.* 1995).

3.2.3 Polycyclic Aromatic Hydrocarbons

PAHs were detected in all harbor composite and reference site samples (Table 3-2). PAH concentrations were slightly lower in sediment composite EGHI compared to the other harbor composite samples. All of the sediment samples demonstrated similar compound distribution patterns (dominated by pyrene and fluoranthene), suggesting similar PAH sources. PAH concentrations in all harbor composite and reference site samples were well below the sediment quality guidelines (Long *et al.* 1995, Table 5).

3.2.4 Metals

Metals were detected in all harbor composite and reference site samples (Table 3-2). Concentrations of most metals were generally below the sediment quality guidelines, especially at harbor locations (Table 3-2). For example, metals concentrations were below the sediment quality guidelines in all harbor composites except for chromium in harbor composite ABC and nickel in harbor composites ABC, DF and EGHI. Chromium and nickel concentrations were also above the sediment quality guidelines in the reference site samples, as were mercury concentrations (Table 3-2). The lowest metals concentrations (except cadmium) were measured in the coarse-grained, low organic carbon content sediment sampled at harbor Station J.

	Sediment Quality			Sample and Station IDs													
	Guidelines (Long		Guidelines (Long		Guidelines (Long		Guidelines (Long BBDS PDS			A, B, C		D, F		E, G,	Н, І	J	
	et al	. 1995)	HAC-012, 013, 014		HAC-015, 016, 017		HAC-019		HAC-020		HAC-021		HAC-022				
Parameter	ER-L	ER-M	$\bar{X} \pm \sigma$	Qual	$\bar{X} \pm \sigma$	Qual	Value	Qual	Value	Qual	Value	Qual	Value	Qual			
Total PCB (a)	22.7	180	14.11±0.23		13.49±0.5		12.6		12.8		10.12		8.12				
Total DDT (b)	3	350	1.43±0.1		0.88±0.07		0.77		0.73		0.68		0.67				
PAH Compounds										-				-			
Naphthalene	160	2100	11.39±0.89		6.49±0.18		10.08		17.66		5.06		23.57				
Acenaphthylene	44	640	23.98±0.66		14.31±0.34		11.72		16.12		4.12		8.71				
Acenaphthene	16	500	4.3±0.35		2.41±0.07		2.5		6.68		1.19		7				
Fluorene	19	540	8.04±0.46		4.52±0.02		5.45		11.21		2.59		12.27				
Anthracene	85.3	1100	23.05±0.16		12.72±0.19		13.14		29.83		5.23		20.6				
Phenanthrene	240	1500	79.75±0.9		46.75±0.72		45.42		69.24		16.93		48.41				
Fluoranthene	600	5100	174.54±3.04		105.39±2.37		87.46		114.65		26.62		71.62				
Pyrene	665	2600	161.69±3.32		94.95±1.93		89.64		143.83		32.03		113.71				
Benzo(a)anthracene	261	1600	69.98±0.93		40.23±0.78		39.49		61.2		14.07		35.87				
Chrysene	384	2800	85.49±2.8		50.77±1		47.19		83.63		16.24		50.2				
Benzo(b)fluoranthene	N/A	N/A	91.71±2.56		54.17±1.24		46.12		69.08		15.75		41.84				
Benzo(k)fluoranthene	N/A	N/A	90.55±4.97		55.85±0.55		45.9		71.62		14.58		39.1				
Benzo(a)pyrene	430	1600	93.94±2.69		55.44±0.86		47.59		69.75		15.08		37.17				
Indeno(1,2,3-cd) pyrene	N/A	N/A	84±2.81		52.15±0.81		40.02		49.02		11.65		24.57				
Dibenz(a,h)anthracene	63.4	260	18.15±0.41		10.97±0.24		9.73		13.18		3.34		7.52				
Benzo(g,h,i)perylene	N/A	N/A	77.65±2.57		47.71±0.67		38.32		47.13		11.65		24.45				
Trace Metals										-				-			
Arsenic	33	85	14±0.4		12.5±0		15.8		18.0		14.9		17.0				
Cadmium	5	9	0.089±0.004		0.075±0.003		0.091		0.172		0.118		0.159				
Chromium	80	145	87.2±0.2		83.9±1.7		81.8		75.7		63.3		47.4				
Copper	70	390	19.3±0.4		17.7±0.2		17.0		16.2		15.8		8.76				
Nickel	30	50	37.4±0.5		36.7±0.3		36.9		34.0		30.5		19.8				
Lead	35	110	26.6±0.2		22.8±0.5		18.3		15.7		11.4		10.1				
Zinc	120	270	113±2		107±1		97.7		89.0		65.0		48.4				
Mercury	0.15	1.3	0.276±0.014		0.145±0.008		0.129		0.110		0.044		0.042				

Table 3-2. Summary of Sediment Organic Contaminant (µg/Kg dry weight) and Metals (µg/g dry weight) Data.

X, Mean; σ , standard deviation; ER-L, Effects Range-Low; ER-M, Effects Range- Median; N/A, not applicable.

(a) Total PCB= Sum of 18 congeners multiplied by 2. ½ MDL value was used for of non-detects. (b) Total DDT= Sum of 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT concentrations. ½ MDL value was used for of non-detects.

September 30, 2008 Page 16 of 18

3.3 Quality Control

The review of the laboratory QC data is documented in QA/QC narratives and RIM QC summary sheets, which are provided with the sample data (Attachment C). The RIM Completeness Checklist is included in Attachment D. In general, the quality of the data is acceptable and the analytical methods are in control. For example, target compounds were undetected in the procedural blanks, indicating that the methods were free of contamination. Recovery and precision results for the MS, MSD, SRM, and sample duplicate QC samples were acceptable for most target compounds, indicating that the methods are in control. Naphthalene was recovered slightly below the lower MQO limit (50%) in the LCS, MS, and MSD QC samples, suggesting that these data may be biased slightly low in the project samples.

During the extraction process for organic analysis, the laboratory broke the bottle containing the rinsate blank for the sediment grab. The sample could not be recovered. Due to the hydrophobic nature of the organic compounds of concern and limited exposure of sediment to the sampling device, no corrective action was deemed necessary by NAE.

Most target compounds were undetected in the equipment rinsate blanks, indicating that the field methods were free of contamination. Selected PAHs and metals were detected in the rinsate blanks. However, concentrations were negligible compared to sample values, indicating that the low-level contamination had minimal impact on data quality.

4.0 REFERENCES

Battelle. 2008. Final Sampling and Analysis Plan, Field Sampling and Sediment Testing, Searsport Harbor, Maine. Prepared for U.S. Army Corps of Engineers, New England District. April 25, 2008.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of Adverse Biological Effects with Ranges of Chemical Concentrations in Marine and Estuarine Sediments. *Environmental Management* 19(1):81–97.

Peven, C.S. and A.D. Uhler. 1993. Analytical Procedures Followed by Battelle Ocean Sciences and Science Applications International Corporation to Quantify Organic Contaminants. Pp. 141-161 in Lauenstein, G.G., and A.Y. Cantillo (Eds.), Sampling and Analytical Methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch Project. Volume IV, NOAA Technical Memorandum NOS ORCA 71. National Oceanic and Atmospheric Administration, Silver Spring, MD.

USEPA/USACE (U.S. Environmental Protection Agency/U.S. Army Corps of Engineers). 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. —Testing Manual. EPA-823/B-98/004. February 1998.

USEPA/USACE (U.S. Environmental Protection Agency/U.S. Army Corps of Engineers). 2004. *Final Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters*. April 2004. U.S. Environmental Protection Agency, Region I, and U.S. Army Corps of Engineers, New England Division, Waltham, Massachusetts. [This page left intentionally blank]

ATTACHMENT A

DRAFT FIELD SAMPLING REPORT

This page left intentionally blank

OF ENGINEERS New England District

Contract No. DACW33-03-D-0004 Delivery Order No. 41 May 12, 2008

Draft Field Sampling Report

FIELD SAMPLING AND SEDIMENT TESTING

Searsport Harbor Federal Navigation Project, Searsport, ME [This page left intentionally blank]

Draft Field Report

FIELD SAMPLING AND SEDIMENT TESTING, Searsport Harbor, ME

Submitted to:

Department of the Army U.S. Army Corps of Engineers North Atlantic Division New England District

Contract Number: DACW33-03-D-0004 Delivery Order Number: DO#41

Prepared by:

Battelle 397 Washington Street Duxbury, MA 02332 (781) 934-0571

May 12, 2008

Battelle The Business of Innovation [This page left intentionally blank]

TABLE OF CONTENTS

1.0	INTROI	DUCTION	1				
	1.1	Site Description	2				
	1.2	Project Objectives	2				
2.0	FIELD S	AMPLING	.2				
	2.1	Harbor Sampling	4				
	2.2	Reference Site Sampling	.4				
	2.3	Field Quality Control	5				
	2.4	Sample Processing	5				
3.0	SURVE	Y CHRONOLOGY	.6				
4.0	SURVEY RESULTS						
5.0	PROBLEMS EXPERIENCED, ACTIONS TAKEN, AND RECOMMENDATIONS7						
6.0	References						

LIST OF TABLES

TABLE 1.	SAMPLING SITES, COORDINATES, AND DEPTHS FOR THE SEARSPORT HARBOR FNP	1
TABLE 2.	SURVEY PERSONNEL AND RESEARCH VESSELS FOR THE SEARSPORT HARBOR FNP	2
TABLE 3.	SUMMARY OF SAMPLE COLLECTIONS FOR THE SEARSPORT HARBOR FNP	4
TABLE 4.	SUMMARY OF RINSATE BLANKS COLLECTED FOR THE SEARSPORT HARBOR FNP	5

LIST OF FIGURES

FIGURE 1. SAMPLING LOCATIONS WITHIN SEARSPORT HARBOR AND REFERENCE LOCATIONS.......3

APPENDICES

APPENDIX A: DAILY FIELD LOGS

APPENDIX B: CORE SAMPLING LOGS

APPENDIX C: SEDIMENT GRAB STATION LOGS

APPENDIX D: CORE PROCESSING LOGS

APPENDIX E: CORE PHOTOS

APPENDIX F: SITE SAFETY FORMS

APPENDIX G: CHAIN OF CUSTODY FORMS

[This page left intentionally blank]

1.0 INTRODUCTION

This report covers the field sampling activities and initial sample processing conducted at the request of the US Army Corps of Engineers, New England District (NAE) to support a proposed navigational improvement and maintenance dredging project for Searsport Harbor Federal Navigation Project (FNP), Searsport, ME.

The field survey involved collecting sediment cores at 10 stations in and around the shipping channel in Searsport Harbor (Figure 1). Three sampling locations were established within the existing navigation channel (E, F, G) and 7 locations were established within the vicinity of the channel (A, B, C, H, I, J). Target core depths (ranging from 3 to 10 feet) as defined in the Sampling and Analysis Plan (Battelle 2008) were based on estimated refusal depths resulting from initial boring studies (Table 1). In addition, triplicate sediment grabs were collected at two reference locations within Penobscot Bay, ME; Belfast Bay Disposal Site (BBDS) and Penobscot Disposal Site (PDS).

Each of the 10 cores were classified and subsampled for grain size analysis; the data collected from these cores will be used by NAE to develop a compositing plan for additional physical and chemical analyses. Samples from reference stations will also be analyzed to determine suitability for disposal of dredge material. A tiered approach will be followed to make the determination, consistent with National Guidance provided in *Evaluation of Dredged Material Proposed for Ocean Disposal—Testing Manual* (EPA/USACE 1998), also known as the "Green Book," and the Regional Testing Manual *Final Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters* (EPA/USACE 2004).

Station ID	Easting (NAD83/ft)	Northing (NAD83/ft)	Latitude (NAD83/DecDeg)	Longitude (NAD83/DecDeg)	Approximate Mudline Elevation to MLLW (ft)	Estimated Penetration Depth (ft)
А	880,114	280,686	44.43601232	-68.89870990	-41	3
В	880,233	281,914	44.43938253	-68.89827718	-39	6
С	880,050	282,853	44.44195592	-68.89899539	-37	7
D	879,858	285,042	44.44795815	-68.89977152	-28	7
Е	880,618	284,950	44.44771593	-68.89685944	-39	5
F	880,000	285,574	44.44941942	-68.89923768	-34	10
G	881,083	285,475	44.44916227	-68.89508847	-38	6
Н	881,470	285,887	44.45029757	-68.89361404	-27	3
I	881,116	286,057	44.45075923	-68.89497286	-27	3
J	880,931	286,593	44.45222712	-68.89569126	-24	3
PDS ^a	872,965	257,132	44.37130060	-68.92561212	NA ^c	NA ^c
BBDS ^b	872,284	269,737	44.40586875	-68.92846873	NA ^c	NA ^c

Table 1. Sampling Sites, Coordinates, and Depths for the Searsport Harbor FNP

^aPenobscot Disposal Site; ^bBelfast Bay Disposal Site; ^cNot Applicable

1.1 Site Description

Searsport Harbor is located in the town of Searsport, in Waldo County, about 27 miles south of Bangor and 91 miles northeast of Portland, Maine. The small commercial fishing harbor is located near the center of town to the west, while the deep-draft commercial cargo port is located at Mack Point to the east. The channel entrance, located west of Sears Island, is approximately 500 feet wide and widens on the approach to the dockage area. The authorized depth of the existing channel is -35 feet MLLW. Proposed navigation improvements include deepening to approximately -44 feet MLLW, widening then entrance to approximately 700 feet, lengthening the channel to approximately 4,400 feet, and expansion northeast of the dockage area.

1.2 Project Objectives

The purpose of this project is to collect sediment samples from representative locations in and around the authorized navigation channel. These sediments will be analyzed for a range of parameters to assess suitability of aquatic disposal of dredge material. Cores were collected using either a vibracore or push core method to the specified penetration depth or refusal. All cores were returned to Battelle's Duxbury facility for characterization and sub-sampling for grain size analyses. Initial grain size testing will allow NAE to determine the compositing scheme for the subsequent physical and chemical analyses.

2.0 FIELD SAMPLING

This Survey Report details the field sampling and sample preparation activities associated with the Searsport Harbor FNP in Searsport, ME. Table 2 shows the survey personnel, duties, and research vessel used to conduct sampling activities. All field personnel received a copy of the Accident Prevention Plan (Battelle, 2008) and Sampling and Analysis Plan (Battelle, 2008). In addition, daily safety briefings were conducted by the chief scientist (Appendix F).

Date	Chief Scientist	Captain	Senior Sampling Staff	Survey Vessel
4/30/2008	Michael McKee	Mark Avakian	John Scanlon	R/V Carolina Skiff
5/1/2008	Michael McKee	Mark Avakian/ Lenny Perry	John Scanlon	R/V Carolina Skiff
5/2/2008	Michael McKee	Bob Bernstein	Lenny Perry/John Scanlon	R/V Moonfish

Table 2. Survey Personnel and Research Vessels for the Searsport Harbor FNP

Sample collection activities are summarized below; details on the survey/sampling methods can be found in the final Searsport Harbor Sampling and Analysis Plan (Battelle 2008). Sampled locations are shown in Figure 1. A chronological summary of survey activities for sampling is provided in Section 3. Preliminary survey results are provided in Section 4. A description of survey problems and corrective actions can be found in Section 5. Daily Field Logs are presented in Appendix A.

Figure 1. Sampling Locations within Searsport Harbor and Reference Locations.

2.1 Harbor Sampling

On April 30 and May 1, 2008, core samples were collected at each of 10 stations (Figure 1) using a vibracorer to maximize efficiency and core recovery. In some circumstances, the silty maintenance material was better retained using a push core method (Stations H and I). A summary of the coring survey data is presented in Table 3. Detailed core sampling logs are provided as Appendix B. All cores were captured in pre-rinsed polycarbonate (LexanTM) liners. Each acceptable core was capped on the bottom while horizontal, positioned vertically and capped on top, labeled, and stored upright. During all field activities samples were stored on the vessel in 30-gallon barrels filled with ice. Throughout the survey, samples were transferred nightly into a refrigerator truck and stored at $4^{\circ}C \pm 2^{\circ}C$ until returning from the field to Battelle, Duxbury. Upon arrival at Battelle, core samples were placed in a secure, continuously monitored cold room ($4^{\circ}C \pm 2^{\circ}C$) until processing.

Station ID	Sample ID	Collection Date	Collection Time (EDT)	Latitude (NAD 83)	Longitude (NAD 83)	Water Depth (Ft)	Tide (Ft)	Penetration (Ft)	Recovery (Ft)
А	HAC-001	05/01/08	11:12	44.436023	-68.898720	45.6	5.2	3.0	2.0
В	HAC-002	04/30/08	15:25	44.439420	-68.898230	44.0	4.0	6.9	6.9
С	HAC-003	04/30/08	12:26	44.441952	-68.898995	38.4	0.8	7.0	6.9
D	HAC-004	04/30/08	10:55	44.447960	-68.899787	32.2	2.8	7.0	6.9
E	HAC-005	05/01/08	13:45	44.447713	-68.896863	40.8	1.1	5.0	3.5
F	HAC-006	04/30/08	11:30	44.449422	-68.899235	37.2	2.3	7.8	7.3
G	HAC-007	04/30/08	09:50	44.449168	-68.895083	45.8	6.6	6.0	5.2
Н	HAC-008	05/01/08	15:18	44.450302	-68.893620	29.6	2.9	3.5	3.1
I	HAC-009	05/01/08	16:05	44.450762	-68.894987	31.0	3.1	4.0	3.1
J	HAC-010	05/01/08	08:58	44.452213	-68.895705	30.0	7.2	3.0	2.0
BBDS ^a	HAC-012	05/02/08	08:28	44.405850	-68.929267	78.3	N/A ^c	0.5	0.5
BBDS ^a	HAC-013	05/02/08	08:49	44.405850	-68.928467	78.3	N/A ^c	0.5	0.5
BBDS ^a	HAC-014	05/02/08	09:05	44.405850	-68.928533	78.3	N/A ^c	0.5	0.5
PDS ^b	HAC-015	05/02/08	09:50	44.370967	-68.924817	146.0	N/A ^c	0.5	0.5
PDS ^b	HAC-016	05/02/08	10:05	44.371083	-68.924983	146.0	N/A ^c	0.5	0.5
PDS ^b	HAC-017	05/02/08	10:20	44.371267	-68.925617	146.0	N/A ^c	0.5	0.5

 Table 3. Summary of Sample Collections for the Searsport Harbor FNP

^aPenobscot Disposal Site; ^bBelfast Bay Disposal Site; ^cNot Applicable

2.2 Reference Site Sampling

Bulk sediment samples were collected in triplicate on May 2, 2008 from two reference locations within Penobscot Bay, ME; Belfast Bay Disposal Site (BBDS) and Penobscot Disposal Site (PDS). A summary of the reference sampling data is presented in Table 3. Detailed station logs are provided as Appendix C. Bulk sediment was collected using a Kynar coated 0.1-m^2 Van Veen grab sampler; sediment was placed into labeled, 3.5-gallon polyethylene buckets, transferred into a refrigerator truck and stored at $4^{\circ}C \pm 2^{\circ}C$ until returning from the field to Battelle, Duxbury. Upon arrival at Battelle, core samples were placed in a secure, continuously monitored cold room ($4^{\circ}C \pm 2^{\circ}C$) until processing.
2.3 Field Quality Control

All sampling equipment was decontaminated prior to sample collection activities following procedures described in the project SAP (Battelle, 2008). Rinsate blanks were collected for each type of sampling equipment used: core liners and grab sampler (Table 4). A sufficient volume of rinsate blank water was collected to conduct organic contaminant and metals analyses. All rinsate blanks were transported to Battelle Duxbury and stored at $4^{\circ}C\pm2^{\circ}C$ until transport to the participating laboratories for chemical analysis. Rinsate blanks for metals analysis were preserved to pH<2 with nitric acid immediately after collection.

Analytical Parameter	Sample ID	Collection Date	Collection Time (EDT)	Sample Container	Sample Volume	Storage	Holding Time	Custodian
Organics	HAC-011	05/01/08	18:30	1-L Amber PC Glass Bottle	full	Cold 4°C±2°C	7 days to extract	Battelle Duxbury (Jeannine Seyfert)
Metals	HAC-011	05/01/08	18:30	1-500mL Teflon Bottle	full	Cold 4°C±2°C	Acidified (pH<2) Metals: 6 months Hg only: 28 days	Battelle Sequim (Carolyn Suslick)
Organics	HAC-018	05/02/08	11:00	1-L Amber PC Glass Bottle	full	Cold 4°C±2°C	7 days to extract	Battelle Duxbury (Jeannine Seyfert)
Metals	HAC-018	05/02/08	11:00	1-500mL Teflon Bottle	full	Cold 4°C±2°C	Acidified (pH<2) Metals: 6 months Hg only: 28 days	Battelle Sequim (Carolyn Suslick)

Table 4. Summary of Rinsate Blanks Collected for the Searsport Harbor FNP

2.4 Sample Processing

Sediment core samples and rinsate blank samples were hand-delivered to the Battelle Duxbury laboratory on May 3, 2008 and maintained in a secure, cold room (4°C±2°C) until transfer, shipment, or processing the following week.

On May 6, 2008, custody of rinsate blank samples was transferred to the Battelle Duxbury laboratory and rinsate blank samples for metals analysis were shipped by overnight carrier to the Battelle Sequim laboratory.

Sediment core samples were processed at Battelle Duxbury facilities on May 5 and May 6, 2008. Details on the sediment processing methods can be found in the Searsport Harbor Sampling and Analysis Plan (Battelle, 2008). In general, the cores underwent visual classification for sediment type, color, odor, and the presence or absence of horizons. Digital photographs were taken of each core prior to subsampling (Appendix E). If a horizon was observed, subsamples were taken from the maintenance layer (top) and parent layer (bottom) after homogenizing the subsections. If no horizon was present, subsamples were taken from the surface (0-1') and underlying layer (1-2') after homogenizing the subsections. Aliquots of these subsamples, in addition to the reference samples, were sent to Applied Marine Sciences (AMS) for initial grain size testing. The core processing logs (Appendix D) provide a detailed record of core visualization and subsampling efforts. Chains of Custody forms for all samples are provided in Appendix G.

3.0 SURVEY CHRONOLOGY

Note: All times are recorded as Eastern Daylight Time.

Wednesday, April 30, 2008

- 0700 Battelle staff and TG&B staff meet at launch area, begin mobilization of the *Carolina Skiff*, conduct GPS/Fathometer check, and conduct health and safety meeting.
- 0745 Locate tidal benchmark at Steamboat public launch and measure elevation to waterline.
- 0820 Depart for Mack Point to install tide board.
- 0852 Install tide board at the end of the SW Pier at Mack Point.
- 0900 Depart for Station G.
- 0950 Complete sediment core collection at Station G. Depart for Station D.
- 1055 Complete sediment core collection at Station D. Depart for Station F.
- 1130 Complete sediment core collection at Station F. Depart for Station C.
- 1226 Complete sediment core collection at Station C. Depart for public launch.
- 1420 Survey in tide board at Mack Point (relative to MLLW) through radio communication with TG&B staff at Steamboat public launch (location of benchmark).
- 1455 Depart public launch for Station B.
- 1525 Complete sediment core collection at Station B. Depart for Station E.
- 1708 Complete sediment core collection at Station E. Depart for public launch.
- 1745 Arrive at boat ramp, conduct GPS/Fathometer check, offload samples, and secure boat. Complete Day 1.

Thursday, May 1, 2008

- 0715 Battelle staff and TG&B staff meet at launch area, conduct GPS/Fathometer check, reconfigure vibracore head for 3 5/8" lexan tubing, and conduct health and safety meeting.
- 0820 Depart public launch for Station J.
- 0858 Complete sediment core collection at Station J. Depart for Station I.
- 1015 Complete sediment core collection at Station I. Depart for Station A.
- 1112 Complete sediment core collection at Station A. Depart for public launch to transfer TG&B staff.
- 1154 Return to public launch.
- 1248 Depart public launch for Station E.
- 1345 Complete second sediment core collection effort at Station E. Depart for Station H.
- 1518 Complete second sediment core collection at Station H. Depart for Station I.
- 1605 Complete sediment core collection at Station I. Depart for Station J.
- 1720 Complete second sediment core collection at Station J. Depart for public launch.
- 1800 Arrive at public launch, conduct GPS/Fathometer check, offload samples, haul and secure boat.
- 1830 Collect vibracore rinsate samples. Complete Day 2.

Friday, May 2, 2008

- 0730 Battelle staff and TG&B staff meet boat captain at Belfast public launch, begin mobilization of the *R/V Moonfish*, conduct GPS/Fathometer check, and conduct health and safety meeting.
- 0750 Depart for Belfast Bay Disposal Site.
- 0820 Arrive on station at Belfast Bay Disposal Site.

- 0915 Complete sediment grab sampling. Depart for Penobscot Disposal Site.
- 0930 Arrive on station at Penobscot Disposal Site.
- 1020 Complete sediment grab sampling. Collect sediment grab rinsate blanks.
- 1108 Depart for Belfast public launch.
- 1145 Arrive at boat dock, conduct GPS/Fathometer check, offload samples, and secure boat. Complete Day 3.

4.0 SURVEY RESULTS

A minimum of one core sample was collected at each of the 10 planned locations in Searsport Harbor (Appendix B). At Stations H and I, additional cores were collected using a push core technique to increase retention of fine silts on the surface. Although multiple cores were collected at select stations, only the most representative core was used for visual characterization and initial grain size testing. In addition, triplicate sediment grabs were collected as reference samples at both the Belfast Bay Disposal Site and Penobscot Disposal Site (Appendix C). Sampling was completed in 3 days. A summary of the coring and sediment grab survey data, which includes date, time and location, is presented in Table 3.

All cores were processed on May 5 and May 6, 2008, at Battelle's Duxbury facility. A representative from NAE (Cathy Rogers) observed the core processing and provided guidance regarding sub-sampling. The core samples analyzed and subsampling intervals are indicated in the core processing logs (Appendix D). Cores were cut laterally, characterized and sampled for grain size. The remaining material was stored in sealed HDPE buckets in a cold room until grain size results are returned, at which time the composite samples will be created for further analyses. Samples collected for grain size analysis were shipped to Applied Marine Sciences (AMS) on Tuesday, May 6, 2008.

5.0 PROBLEMS EXPERIENCED, ACTIONS TAKEN, AND RECOMMENDATIONS

During core sampling at Stations H and I, initial attempts resulted in poor recovery rates (<60%). Based on initial assessment of sediments and site conditions, the field crew switched from a vibracore method to a push core method in an effort to increase surface layer retention. Sampling efforts were successful and recovery rates were increased to acceptable levels.

During the extraction process for organic analysis, the laboratory broke a bottle holding the rinsate blank for the sediment grab. The sample could not be recovered. Due to the hydrophobic nature of the organic compounds of concern and limited exposure of sediment to the sampling device, no corrective action was deemed necessary by NAE.

6.0 REFERENCES

Battelle. 2008. *Final Sampling and Analysis Plan, Field Sampling and Sediment Testing, Searsport Harbor, Maine*. Prepared for U.S. Army Corps of Engineers New England District. April 25, 2008.

- EPA/USACE (U.S. Environmental Protection Agency/U.S. Army Corps of Engineers). 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. —Testing Manual. EPA-823/B-98/004. February 1998.
- EPA/USACE (U.S. Environmental Protection Agency/U.S. Army Corps of Engineers). 2004. Final Regional Implementation Manual for the Evaluation of Dredged Material Proposed for Disposal in New England Waters. April 2004.

APPENDIX A DAILY FIELD LOGS

[This page left intentionally blank]

Field Log Form

Project: Field Sampling and Sediment Testing - Searsport Harbor, ME **Project #:** G606441

DATE_INITIALS_04	30/08 MPM START TIME STOP TIME 0745 /18:00
	Searsport Harbor Searsport, ME

VESSELNAME R/V Carolina skiff

land. Na ta	PERSONNEL		AFFILIATION		
1.	Mark Avakian		TGSG	e7	-
	John Scalon		TGES	4	jan Bin
<u></u>	Mike MCKee		Battelle		4
\yef			*	*	* •
		· · · · · · · · · · · · · · · · · · ·		×	
				Ą	
					'≪tog.
WEATH	ER			a de la constante de la consta	

1

TIME	TEMP %C	PRECIP	SKY	WIND
0745	45°F	none	clear	5 kts NW
1226	50° F	n one	ptly cloudy	SEB NW
1968	45VF	nune	pty doudy	BLISNW

COMMENTS

surveyed tidal benchmark at public lauch of used to detrouge	
WCS 84) N 44° 27. 187'/ WOG8° 55.514' elaston ± MLLW	
NAD 33) N 44.45310 / W 068.92524 +9.75'MLW @ 08:08	
> installed tide board at Maik Pt. Jethy 6.09' @ (8:52 (not based on	-
Will cross check this tide board w/ blackmark throughout day	3
is surveyed in a bandmark funderside of concrete slab at and of SW pier	
located at Mack Pt + 9.57' MLLW elevation	1
Lo compared Mack At benchmark to relative tide board -> board is -1' off	
add I' to all todal measurements throughout the day	

Project: Field Sampling and Sediment Testing - Searsport Harbor, ME **Project #:** G606441

CHECK dGPS against at least one reference checkpoint at beginning and end of each day.

dGPS Reference Checkpoint Name Stramboat public launch (Searsport, ME) Benchmark Location: Time **Units and Datum** Northing / Easting / Longitude

		Latitude		Time
Garmin Garmin	NAD83 / Deg Deg Min	44027.143	68° 55.492	
Leica	NAD 83 / Dec Dec Min	44027.1429	68° 55. 4929	08:20
End of day 62min	NAD83 Dec Deg Mrn	44027.141	680 55.477	18:00
6.03	NADS3/Deg Der Min	44027.1414	68° 55,4758	

Comments -

Cross checked Leica MX410 dGPs (TG-8B) with Helle's hardheld Gamin 12 XL Battel

Date/Time 04/30/08 (me noted) Vessel Carolina Skiff Unit Make/Model Garmin 12×L 10102 MX 410

HEALTH AND SAFETY BRIEFING:

-slips, thos, falls
- decon procontions
- see safety forms

Fathumeter duck

Pirante Max 15 Fathemater - 11' Weighted line - 11.3'

* consistently within < 1' difference throughout the day

Field Log Form

Project: Field Sampling and Sediment Testing - Searsport Harbor, ME **Project #:** G606441

Searsport Harbor, Sear	sport ME
ESSEL NAME Carolina Skill	
PERSONNEL	AFFILIATION
Mark Avakian	<u>\</u>
John Scalon	TG8 B
LENNY Perry	/
Miles Male of	Rattila

WEATHER

TIME	TEMP °C	PRECIP	SKY	WIND
07:30	50° F	none	clear	SLAN
10:45	50°F	none	clear	5 kts W
15:45	50° F	KONE	overcast	5 kts NW

COMMENTS

5/s" dimoter cores 3 - converted ma aver vibracore tofor < he COTES push core method to improve recovery rate +0 - Conver 24 H.T T 6ns mosste blacks after last core collection - collected

Project: Field Sampling and Sediment Testing - Searsport Harbor, ME **Project #:** G606441

CHECK dGPS against at least one reference checkpoint at beginning and end of each day.

dGPS Reference Chec Benchmark Location:	kpoint Name <u>Steamboat</u>	public launch	(Searsport, ME	2
Time	Units and Datum	Northing / Latitude	Easting / Longitude	TIME
<i>f</i>		1/annuuc		Contraction and a second second
Beginning of day	NAD 83/ Deg Dec Min	440 27.143N	68°55.476 W	03:13
Leica	j J	44" 27.1415 N	68° 55 4758 W	
End of day		49027.184N	68°55.520 W	18:20 0
L	1 Y	77 61.1836N	48 11. 22.010	

Comments -

Gross checked Leica MX410 dGPS (TG7B) with Battelle's handheld Gamin 12xL

Date/Time 05/01/08 Vessel Carolina Skiff Unit Make/Model Garmin 12XL/ Leica MX410

HEALTH AND SAFETY BRIEFING:

	-slips, typs & falls	
انىر. 	decon precautions	
	overhead hazands	
		······································

Fothometer check Piranha Max 15 Fotho - 16' Wrighted Line - 16.0'

() Not at the dock, boat pulled to the top of the ramp

Field Log Form

Project: Field Sampling and Sediment Testing - Searsport Harbor, ME **Project #:** G606441

Penobs	HBZY Disposed Sites
ESSEL NAMER/vMo	nfish
PERSONNEL Mike Maker	AFFILIATION Balla
Lenny Perry Tohn Scal	>TGAB
Rob Remite	in Moonfish Capt

WEATHER

TIME	ТЕМР,с€	PRECIP	SKY	WIND
0200	55°F	nono	doz~	calm
09:45	60°F	none	dear	LSETS

COMMENTS

- conducted rinsate blank sampling at IDS after sediment grab collection

Project: Field Sampling and Sediment Testing - Searsport Harbor, ME **Project #:** G606441

CHECK dGPS against at least one reference checkpoint at beginning and end of each day.

dGPS Reference Checkpoint Name <u>Belfast public larach</u> Benchmark Location:				
Time	Units and Datum	Northing / Latitude	Easting / Longitude	
Beginning of day	NAD 83 Deg Dec. Min	44°25.735 49°25.734	0690 00.204	07:32
End of day	+ ' +	44° 25, 745 44° 25, 747	06900.179	1:45

Comments -

Date/Time_05/62/08 Vessel_ R/V Moon fish Unit Make/Model_ Raytheon NAV 298 GPS / Garmin 12×L

HEALTH AND SAFETY BRIEFING:

- back injunies - pinch hazards - see salety forms

Fatho Check Futorno FCV-582L 10.4' Weighted Line 10.9'

APPENDIX B CORE SAMPLING LOGS

[This page left intentionally blank]

	Cori	ng Field Log		
	USACE NAE Pro	oject: Searsport Harbor, ME		
	Proj	ect # G606441		
	Sample ID: HAC-001	Sampled by: MPM		
	Site: A	Date: 05/01/08		
	Reduced Sounding (MLW from chart)	Location Method		
	NF Live Fotho Measured Tide	dGPS Loran Depth	Ranges/Bearing	
	Sounding: 46.2 46/ +9.2 Mul			
	Sea State: colm	Vibra CoreGravity Corer	Push Tube	6 - J. F.
	Weather: 50°E/ (1825 / 5Kt3 W	Water Sampler Other (spe	ecify)	
	Coordinates a cas	Penetration Depth: 71	Time	
	Latitude: Numer 26,1612		10:59	
	Longitude: W 1.8° 53, 9233	Recovery Depth: < 1		
	Coordinates	Penetration Depth: 2 '	Time: 1/ 17	
560	Latitude: N 44026.1614		11-12	
10 - 90.0	Longitude: W 68° 53.9232	Recovery Depth: Z		
A A A	Coordinates	Penetration Depth:	Time:	
	Latitude:			
	Longitude:	Recovery Depth:		
	Coordinates	Penetration Depth:	Time:	
6	Latitude:			
	Longitude:	Recovery Depth:	75 °	
1.7	Coordinates	Penetration Deptn:	Time:	
	Lantude:	Pagovary Dopth:		
	Coordinates	Penetration Depth:	Time	
	Latitude:	r chetration Depth.	T mic.	
	Longitude:	Recovery Depth:	10 m	
	Coordinates	Penetration Depth:	Time:	
	Latitude:	· · · · · · · · · · · · · · · · · · ·		
	Longitude:	Recovery Depth:	199 ⁹	
	Coordinates	Penetration Depth:	Time:	
	Latitude:		d.	
	Longitude:	Recovery Depth:		
	Coordinates	Penetration Depth:	Time:	
	Latitude:	D. J.	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	
	Longitude:	Recovery Depth:	Time at the second seco	
	Lotitude	Penetration Depth:	1 ime:	
	Longitude:	Recovery Depth:		
	Material Description:	Notes:	and the second s	
	f and the half of	Oper recovery / a	coro discarded	
	the sitt to solt clay on	tanker decked at Mai	kpt. / another	
	۲ × ۲ ۲ × ۲ × ۲ × ۲ × ۲ × ۲ × ۲ × ۲ × ۲	steaming inth anchorage		
		5 /		
1	L	Launa and an and an		

an and a second

.

· · · · ·		
. ¥		
ŧ		
\$	Coring Field Log	
USAC	CE NAE Project: Searsport Harbor, ME	
	Project # G606441	
	Sampled by: MPM	
Sample ID: HAC-002		
Site: B	Date: 04/30/08	
Reduced Sounding (MLW from chart):	Location Method	
weighted line / tatho/"	dGPS De	pthRanges/Bearing
Sounding: 44 / 43'/	+4.0 Mill	
Sea State: chosen / 1'	Vibra Core Gravity (orer Push Tube
	als in the core Gravity of	
Weather: 450F/pHy clarky/ve	20 CTS Water Sampler Other	er (specify)
Coordinates Coordinates	Penetration Depth: 6.9'	Time:
Latitude: 44° 26 3622 N	D D 1 /9'	19.20
Longitude: 68 53.8938 W	Recovery Depth:	Timer
Latitude:	Fenetration Deptil.	
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	Time
Latitude:	Penetration Depth:	1 ime:
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Latitude:	Penetration Depth:	1 ime:
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
L'atitude:	Penetration Depth:	1 ime:
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates Latitude:	Penetration Depth:	Time:
Longitude:	Recovery Denth	
Material Description:	Notes:	
alin and ellerter	1 +72	
orive grey sirry can		
hm day	-	

Cori	ing Field Log	
USACE NAE Proj	oject: Searsport Harbor, ME ject # G606441	
Sample ID: HAC-003	Sampled by: MPM	
Site: C	Date: 04/30/08	
Reduced Sounding (MLW from chart): Weight a Line/ Father Messured Tide	Location Method VdGPS Loran Depth	Ranges/Bearing
Sounding: 38.4' 38' +0.8 MUL		
Sea State: C2/m	Sampler Type:	Push Tube
Weather: 50°F/pHyclordy/ SUTNW	Water Sampler Other (sp	ecify)
Coordinates WPG81 Latitude: 44226 5171 N	Penetration Depth: 71	Time: 12:26
Longitude: 68 53.9397 W	Recovery Depth: 6.8'	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:	Ĩ	
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:	1	
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:	1	
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	the second se
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Material Description: Olive grey silly clay to from clay	Notes:	

Cor USACE NAE Pr Pro	ing Field Log oject: Searsport Harbor, ME ject # G606441	
Sample ID: HAC-004	Sampled by: MPM	
Site: D	Date: 04/30/08	
Reduced Sounding (MLW from chart):	Location Method	
Waghted Line, Fathro Merride	dGPS Loran Depth	Ranges/Bearing
Sounding: 32.4 32 + 28 ***	Sampler Type:	
Sea State: Choppy	Vibra CoreGravity Corer	Push Tube
Weather: 45° F/OJOCASH 5-10 NW	Water Sampler Other (spe	ecify)
Coordinates wa 678	Penetration Depth: 6.5	Time: 1029
Latitude: 44°26 8784 N		10.33
Longitude: 68° 53.9869 W	Recovery Depth:	
Coordinates WP 679	Penetration Depth: 7	^{1 ime:} 1055
Latitude: 14920.8110 N	Descurry Donths	
Coordinates	Recovery Depth.	Timat
Latitude:	Fenetration Deptil.	1 mie.
Laurude.	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:	reneutation Deptit.	i mite.
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:	Å	
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	PD -
Coordinates	Penetration Depth:	1 ime:
Lantude:	Recovery Denth:	
Coordinates	Penetration Depth:	Time:
Latitude:	reneutation Deptil.	Time.
Longitude:	Recovery Depth:	,
Coordinates	Penetration Depth:	Time:
Latitude:	· ·	
Longitude:	Recovery Depth:	
Material Description: Olivo grey silly clay to firm clay	Notes: @ core not intact / discardod	under 60% recover

۹_۶

je.

0

×.,

- ANDRA

w0 "2'

Coring Field Log USACE NAE Project: Searsport Harbor, ME Project # G606441 Sampled by: MPM Sample ID: HAC-005 Date: 04/30/08 Site: E Location Method Reduced Sounding (MLW from chart): measured Tides WELINE Fatho dGPS ____ Loran ____ Depth-____ Ranges/Bearing +7.6 MUN Sounding: 47' Sampler Type: Sea State: Vibra Core ___Gravity Corer ___Push Tube hood Orly cloudy ESKER N Weather: 4 Water Sampler _ Other (specify) Coordinates Penetration Depth: Time: NP 634 L Latitude: 44 26.8621 1630 Longitude: 8 53.8131 Recovery Depth: Time: 16:42 Penetration Depth: Coordinates NP 685 1043 26.8635 N Latitude: WD=1? Recovery Depth: 2.4' Penetration Depth: 4.2' Longitude: 3.8120 Time: 17:08 Coordinates WP 685 44°26.8635 N 68°53.8120 W 2023 Latitude: Recovery Depth: 2.6 Longitude: Penetration Depth: 4.5' Time: 13:25 Coordinates p (92 Ø 4 26.8626 N Latitude: - QW 68 53.8113 W Longitude: Recovery Depth:) zte: 40,8 Penetration Depth: 💦 🏅 Time: 13:45 Coordinates 44 26.8628 N 3063 Latitude: 68 53.8118 W Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Time: Penetration Depth: Latitude: Longitude: Recovery Depth: Penetration Depth: Coordinates Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Time: Penetration Depth: Latitude: Longitude: **Recovery Depth:** Material Description: Notes: Deer recovery = core discorded 2 pour recovery = core discorded - Olive gray to brown gzy C1.6 - Soft silt to clay w/ shell hash and organics 1.6-2.9' 3) returned to station E to resample on OS/01/08 -> use core 3013 $\hat{\pi}^{\hat{\ell}}_{-\hat{\ell}_{+}}$

38

. 1 34

Cori	ng Field Log		
Project # G606441			
Sample ID: HAC-006	Sampled by: MPM		
Site: F	Date: 04/30/08		
Reduced Sounding (MLW from chart):	Location Method dGPS Loran Depth	Ranges/Bearing	
Sounding: 37.2' / 37' + 2.3 M	LW		
Sea State: choppy	Sampler Type:	Push Tube	
Weather: 45°F/050-tast/6-1060 NW	Water Sampler Other (sp	ecify)	
Coordinates WP 680 Latitude: 44°26 9653 N	Penetration Depth: 7.9'	Time: 11:30	
Longitude: (8 53.9541 W	Recovery Depth: 7.4		
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:	1999	
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:	Bacovery Depth		
	Departmention Depth:	Time	
	Penetration Depth:	1 line:	
Lanuud. Longitude:	Recovery Depth:		
Coordinates	Penetration Depth.	Time:	
Latitude:			
L'antitude:	Recovery Denth		
Material Description:	Notes:	1	
olive grey silly day to firm clay			

Com			1
	ing Fleid Log		
USACE NAE Pr	oject: Searsport Harbor, ME		
Proj	ect # G606441 *		1.4.4
Sample ID: HAC-007	Sampled by: MPM		
Site: G	Date: 04/30/03		
Reduced Sounding (MLW from chart):	Location Method		4
meighten Line =>The Meshafide	dGPS Loran Depth	Ranges/Bearing	
Sounding: 45.8 / 45 / 6.6 M	L.h.		
Sea State: chopp-1	Sampler Type: Vibra CoreGravity Corer	Push Tube	
Weather: 450F/ptly cloudy/ Winds No	Water Sampler Other (spe	ecify)	
Coordinates	Penetration Depth:	Time:	
Latitude: 44° Z6.9501 N	الله يؤتندر العنيد	0950	
Longitude: 68° 53.7050 W	Recovery Depth: 5.5]
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude: /	Recovery Depth:		1
Coordinates	Penetration Depth:	Time:	
Latitude:		1	
Longitude:	Recovery Depth:		1
Coordinates	Penetration Depth:	Time:	
Lätitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:	Deservery Denth		
	Recovery Depth:	Time	
Latitude:	Penetration Depth:	1 me:	19 M
Longitude:	Recovery Depth:		1. 11.2
Coordinates	Penetration Denth:	Time	C 357
L'atitude:	reneuration Deptil.	Time.	2
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:			
Longitude:	Recovery Depth:	/ · · · * · · ·	
Coordinates	Penetration Depth:	Time:	1
Latitude:			
Longitude:	Recovery Depth:		
Coordinates	Penetration Depth:	Time:	
Latitude:	Ĺ		
Longitude:	Recovery Depth:		-
Material Description:	Notes:	5.4	
- silly day at surface to			
firm day at bottom			
- Drive gray to orre gray			
TP 1151461 St 2.5			

1. 1.

ting and the second sec

 $\left(\cdot \right)$

. Seenand

10000

Coi USACE NAE P Pro	r ing Field Log Project: Searsport Harbor, ME Dject # G606441	9 2
Sample ID: HAC-008	Sampled by: MPM	
Site: H	Date: 05/01/08	
Reduced Sounding (MLW from chart):	Location Method	
Sounding: 29.3 Measured Tide	UdGPS Loran Depth	Ranges/Bearing
Sea State: choppy	Sampler Type: Vibra CoreGravity Core	rPush Tube
Weather: 50°F/augrate	Water Sampler Other (si	nacify)
Coordinates 10 17 000 COST	Penetration Depth: ** f	Time: (2) an Pan
Latitude: $M = 695$	reneuration Deptil.	1 mile. 16:00 () with
Longitude: W C 8º 53 . 616 5	Recovery Depth: 2.9'	15:00 10
Coordinates 694	Penetration Depth: 2	Time: 16 19
Latitude: 1 440 27.0181	1 3.5	1018 60
Longitude: w 68°53, 6112	Recovery Depth: 3.	15:18
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Lotituda	Penetration Depth:	1 ime:
Lantude:	Pacowary Donthy	
Coordinates	Popotration Donth	Time
Latitude:	Penetration Deptn:	1 ime:
Lanuuc.	Recovery Depth	
Coordinates	Penetration Depth:	Time
Latitude:	reneuation Depui.	I mie.
Lannude.	Recovery Denth:	
Coordinates	Penetration Depth:	\$
Latitude:		
Longitude:	Recovery Depth:	
Coordinates	Penetration Depth:	Time:
Latitude:		
Longitude:	Recovery Depth:	
Material Description:	Notes:	*
	DOOP RINGON.	- discardid cora
e'hue gren fine sill to	not recorded	on shoot
	B Switched from Viko	score to aide and
soft day bothm	L attra L .	Sun A
l.	To ononpor > 18Ce	NOW IN A
	(3) Time incorrectly logo	led in military tarmat
	<u> </u>	
		<u>ب</u> ۲
		the design of the second se

WI= 29.6

K.

Coring Field Log USACE NAE Project: Searsport Harbor, ME Project # G606441 Sampled by: MPM Sample ID: HAC-009 Date: 05/01/08 Site: I Reduced Sounding (MLW from chart): Location Method Measured Tide Wt. Hne dGPS ____ Loran ____ Depth ____ Ranges/Bearing + 6.3 ML Sounding: 26 Sampler Type: Sea State: Vibra Core ____ Gravity Corer ____ Push Tube Celm winds NV dear 50°F1 Weather: Water Sampler ____ Other (specify) 1185 Coordinates 12 (090 Penetration Depth: 2 / Time: 1015 44°27.0441 68°53.6990 Latitude: 10AZ Longitude: Recovery Depth: Coordinates WP 695 Penetration Depth: 41 Time: 16:05 \bigcirc 282 44027.0457 Latitude: Recovery Depth: 3.1 Longitude: 68° 53.6992 Penetration Depth: Coordinates Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Penetration Depth: Coordinates Time: Latitude: Longitude: Recovery Depth: Coordinates Time: Penetration Depth: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Material Description: Notes: O switched from vibra core to push core to attempt > recovery fine silf-sand mix to soft clay on bottom

Tide = 3.1

Coring Field Log USACE NAE Project: Searsport Harbor, ME Project # G606441 Sampled by: MPM Sample ID: HAC-010 Date: 05/01/08 Site: J Reduced Sounding (MLW from chart): Location Method Measured Tid w Line dGPS ____ Loran ____ Depth ____ Ranges/Bearing Fatha +7.2 MLLV 0' 301 Sounding: Sampler Type: colm Sea State: Vibra Core ___Gravity Corer ___Push Tube unds Weather: 50° F/ dez-/ 5 krs N Water Sampler ____ Other (specify) Time: 08:58 Penetration Depth: 2 Coordinates WP689 Latitude: N 44° 27.1329 122 Longitude: w 68° 53. 7423 Recovery Depth: Time: Penetration Depth: 🥊 Coordinates WP676 0Latitude: N 44° 27, 1340 (2)Longitude: W 68°53.741 Recovery Depth: Coordinates NP 697 Penetration Depth: 2' Time: 1720 440 27.1335 Latitude: 2.62 2.4' Recovery Depth: Longitude: 63.7405 Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Longitude: Recovery Depth: Coordinates Penetration Depth: Time: Latitude: Recovery Depth: Longitude: Penetration Depth: Time: Coordinates Latitude: Longitude: Recovery Depth: Penetration Depth: Time: Coordinates Latitude: Longitude: Recovery Depth: Penetration Depth: Time: Coordinates Latitude: Longitude: Recovery Depth: Description: Notes: Notes: Dive grey Silt/sznd mixture bottom (1.4' to 2.4') transiture From sznd to course sznd/grevol gravelly sznd buttom of switching to VC Material Description:

ND= 24.2

APPENDIX C SEDIMENT GRAB STATION LOGS

[This page left intentionally blank]

	Sample ID Label	ľ	Field Measurements
			Station Donth (M: 763
In Station	- Station Arrival label		Weather:
			Winder CELL
Date: 05/04/08	Date: 05/02/08		
ime: 08:20	- lime 08:20		Sea: <u>Cam</u>
	- Belfast Bay Dispo	sal fite	Recorded by: MP M
	Sample #1		Grab Size: 0.1 m ² O.1 m ²
OFE Station	Latitude: 140 74751N		Grab penetration (cm):
69:15	Longitude: 0499 55 456 W		Redox Depth (cm):
	Time:		Sediment Texture:
	Sample ID:		olive arey silfy day
*****	HAC-Ø12		no otor
	Comments: some muluchaster in	the constru	
****	Some projection of	rie sarpie	
	Sample #2	0	Grab Size: 0.04 m ² O.1 m ²
	Latitude:	· F	Grab penetration (cm):
·	Longitude:	···	Redox Depth (cm): N/A
	Time: 0680 55. Toy W		Sediment Texture:
	Sample ID: US: 47		olive gray silly day
	HAC-913	· · · ·	no cduc !!!
· · ·	continents: were tubes		
د	Sample #3	10	Grab Size: 0.04-m² O.1 m²
		.	Grab penetration (cm):
	Longitude: 44274.351 N		Redox Depth (cm):
	Time: C8º 55 7 12 W		Sediment Texture:
	Sample ID: 09:05	^%	Olive grey silty clay
	HAC-ØIH		no alor
	Comments: wirm tubes	nen - Merik Alakanan mananan kerangan berhada menangan berakan sebesah berakan sebesah berakan sebesah berakan	
	Sample #4	·	Grab Size: 0.04-m ²
	Latitude:		Grab penetration (cm):
	Longitude:		Redox Depth (cm):
	Time:		Sediment Texture:
	Sample ID:		
	0	L	
****	Comments		
	Sample #5		Grab Size: 0.04-m ²
	Latitude:		Grab penetration (cm):
	Longitude:	i F	Redox Depth (cm):
	Time:		Sediment Texture:
	Sample ID.		
	Comments	<u>in an an</u>	
	- standard	·~	
lemarks:		:24 %	
ма Манан на селото со со		n and the	
			and the second
			and the second

ASS 2

n Vielanija Vielanija Vielanija

	Sample ID Label	Field Measurements
		Station Depth (M) FF 146'
On Station	Station Arrival label	Weather: calm, clear, SGOP
Date: 05/02/08	Date: 05/02/08	Winds: < SKER
ime: 09:20	Time	Sea: Calm
	A COL	
	Isleboro Disposed Site	Recorded by: MPM
	Sample #1	Grab Size: 0.04 m ² 0.1 m ²
offstation	Latitude: 440 22 258 N	Grab penetration (cm):
	Longitude: Nas compa	Redox Depth (cm): N/A
11:08	Time: 060 57.9 87 W	Sediment Texture:
	Sample ID:	clive grey slayey silt
	440-015	this par of bown s. 1
	Comments: worm tubes	no oder
	• • • •	· · · · · · · · · · · · · · · · · · ·
	Sample #2	Grab Size: 0.04-m ²
	Latitude: 440 27 7 BC	Grab penetration (cm):
	Longitude:	Redox Depth (cm):
	Time: 08° 55 499	Sediment Texture:
*****	Sample ID: 10,07	olive gray clayey silt
****	Comments:	ven thin side of brown is
	WOTTH MERS	ne octor
	Sample #3	Grab Size: 0.04-m ²
	Latitude: 44° 20 1 1	Grab penetration (cm):
	Longitude: 68 66 627	Redox Depth (cm):
	Time:	Sediment Texture:
	Sample ID:	olive grey cleyey silt
	740-011	thin layer of Brown Sil
	comments: wom tubes	he odor
	Comple #4	0 = 100
	Sample #4	Grab Size: 0.04-III
		Beday Depth (cm):
	Time:	Sediment Texture:
	Sample ID:	
	•	
	Comments:	
	Sample #5	Grab Size: 0.04-m ²
	Latitude	Grab penetration (cm):
	Longaude:	Sediment Texture
	Sample ID:	
	· · · · · · · · · · · · · · · · · · ·	
	Comments:	
emarks: Deco g	abotter and inclusion	
<u>Strong</u>) and classify collection on site	Palter sandes callected
<u> </u>		+ se pus concea
	A A A A A A A A A A A A A A A A A A A	and the second

. 1998

APPENDIX D CORE PROCESSING LOGS

[This page left intentionally blank]

Penetration of thumb: <0.25 cm = hard (H) 0.25 - 2.0 cm = firm(F)2.0 - 4.0 cm = soft (S) >4.0 cm = very soft (VS

CEMENTION

N = not cemented W = weakly cemented M = Moderately cemented S = Strongly cemented

STRUCTURE

H = Homogeneous S = Stratified L = Laminated M = Mottled

HCI REACTION

N = None W = Weak S = Strong

i conj gradca canac, gratonj canac
Silty sands, sand-silt mixtures
Clayey sands, sand-clay mixtures
Silts and very fine sands, silty or clayer sands, or clayer silts, with slight plast
Clays of high plasticity, fat clays
Lean clays, lean clays with sand, etc.
Shell hash Peat/organic matter
MAXIMUM PARTICLE SIZE SC = Small Cobble CP = Coarse Pebble MP = Medium Pebble SP = Small Pebble CS = Coarse Sand MS = Medium Sand FS = Fine Sand VFS = Very Fine Sand Z = Silt
<u>ODOR</u> N = None H = Hydrocarbon S or HS =Sulfide

clayey fine

plasticity.

<u>COLOR</u> g or gr. = grey or. = orange gm. = green dk = dark It = light brwn = brown blk = black

Page ____ of ___

Page ____ of ____

Page _____ of _____

Page _____ of ____

Page ____ of ____

Page _ of _

[This page left intentionally blank]

APPENDIX E CORE PHOTOS

[This page left intentionally blank]

STATION ID: B COLLECTION DATE: 04/30/2008 TOP BOTTOM

.9 2 4 5 3 STATION ID: C COLLECTON DATE: 04/30/2008 TOP Botton

STATION ID: D COLLECTION DATE: 04/30/2008 BOTTOM TOP

STATION ID: F Collectro DATE: 04/30/2008 TOP BOTTEM .5 .6 .8 .9 .7 1 FT .1 2 .3 4 5

APPENDIX F SITE SAFETY FORMS

[This page left intentionally blank]

Personnel Accident prevention Guidelines for Marine Operations Conducted in Support of the U.S. Army Corps of Engineers Field Sampling and Sediment Testing, Searsport Harbor, Searsport, ME.

I have received a copy of the Accident prevention Plan prepared for the above-referenced site and activities. I have read and understood its contents and I agree that I will abide by its requirements.

Representing (Print): Bettelle Company Name

Personnel Accident prevention Guidelines for Marine Operations Conducted in Support of the U.S. Army Corps of Engineers Field Sampling and Sediment Testing, Searsport Harbor, Searsport, ME.

I have received a copy of the Accident prevention Plan prepared for the above-referenced site and activities. I have read and understood its contents and I agree that I will abide by its requirements.

Name (Print):	JOHN F SCANLON	
Signature:	PON	Date: \$1/30/08
Representing (Pri	int): TG-+B Company Name	

April-May 2008

¢

Yest

Personnel Accident prevention Guidelines for Marine Operations Conducted in Support of the U.S. Army Corps of Engineers Field Sampling and Sediment Testing, Searsport Harbor, Searsport, ME.

I have received a copy of the Accident prevention Plan prepared for the above-referenced site and activities. I have read and understood its contents and I agree that I will abide by its requirements.

Name (Print):	Linwood	Renzy		
Signature:	Jun P.	m	Date:	5-1-08
Representing (Print):	Company Name	+B	1999 ti minini 1919 ti ta 1977 ti	

Personnel Accident prevention Guidelines for Marine Operations Conducted in Support of the U.S. Army Corps of Engineers Field Sampling and Sediment Testing, Searsport Harbor, Searsport, ME.

I have received a copy of the Accident prevention Plan prepared for the above-referenced site and activities. I have read and understood its contents and I agree that I will abide by its requirements.

Name (Print): Mark Avakian	
Signature: Mal	Date: 5/1/08
Representing (Print):Company Name	

11011

Site Safety and Health Plan Pre-Entry Briefing Attendance Form

Vibracore Sampling

Briefing Conducted By: Mike Mckee

Date Performed: 04/36/68

Printed Name	Signature	Representing
JUHN F SCANLON	Alt	IG-1B
Len PORI	ching Pay	7640

the second se

Site Safety and Health Plan Pre-Entry Briefing Attendance Form - Sedment Gosb Sompling Briefing Conducted By: Mike MCKee Date Performed: 05/02/08

Printed Name	Signature	Representing
Lev Prog	By Pay	TG+B TI IR
Robert Beinstein	Hard Sti	MOUNFISH
	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·

APPENDIX G CHAIN OF CUSTODY FORMS [This page left intentionally blank]

Proj. No GGOGG	141	Proj. Name Searspa	rt-Harbor																	
SAMPLERS:	Signature MML	JPh				ANALY "NUME	YSIS REQ BER OF C	UESTED - CONTAINE	→ RS″	L	۵	H PRINT	TT.	A	fami	VLS	ER	TED	WED	iners
DATE	TIME	BATTELLE ID	CLIENT ID		SAM	PLE DESC	RIPTION			PES	PCI	TPI FINGER	PAI	VO,	TB	META	OTHI	ACIDII	PRESER	Total Nu of Conta
05101108 04130108 04130108 04130108 05101108 04130108 04130108 05101108 05101108 05101108	11:12 15:25 12:26 10:55 13:45 11:30 09:50 14:18 10:15/16:05 08:58/17:20	500/15:18	HAC-001 HAC-002 HAC-003 HAC-004 HAC-005 HAC-006 HAC-007 HAC-008 HAC-009 HAC-009 HAC-009	Station A Station B Station C Station C Station E Station F Station F Station F Station F Station f Station J	vibra vibra vibra vibra vibra vibra vibra	600 52 2000 52 2000 2 2000 2000 2000 5 2000 (2 2000 (2	mple (2 ionale Somple Somple Somple (Dangle (2.9') a c') a pu	(6.7') (6.8') (7') (2.9'2.6') (2.9'2.6') (2.9'2.6') (2.9'2.6') (2.9'2.6') (2.9'2.6') (7	3.5') (3.i') 2.4')											$\frac{1}{1}$
Relinquished	by:	p Mm		Date 05/03/08	/Time /200	0 R	eccived by:	In stor	age (c	P B	səHe	-11e	Dueb	wy		05	1031	Date/T	ime 120	0
Relinquished	by:			Date	/Time	R	eceived by:		V]	Date/T	íme	
Comments:	() mpm	05/12/08 -	- military time	incorrectly	10990	d on c	018 521	npling log							I					

Proj. No		Proj. Name																
G606	5441	Sears	port Habor															
SAMPLERS	: Signature							T					1		I			
	111	TORN			A	ANALYSIS REC	UESTED>			Ę							0	5 00
	Mus	hy h			"	NUMBER OF C	ONTAINERS"	L	- m	RIN		_	T.a.	TS	ER	ED	VEI	inen
					·····			ES	PCE	ERF	PAF	VO/	TBT	STA	THE	DIF	SER	Nu
	analysis and		FIELD							NG				W	Ó	ACI	RE	otal of Co
DATE	TIME	BATTELLE ID	• CLIENT ID		SAMPL	E DESCRIPTION	$\langle \rangle$			뜨							a.	E
05/02/05	68.28		HAC-017	Balfacter	hunar	al Cha End	(3562)											
010000	08:49		HAC-013	RalCart Ra	J Discon	Cal Site Sod	600 1013											
	09:05		HAC-014	Balfact Ban	Disnosal	Gt Sod ($rac{1}{2}$ $rac{1}{2}$											
	09:50		H4C-015	Isleboro 1	150057	1 Site Sed	rab Laf 3											
	10:05		HAC-016	Isleboo D	Isaasal	Site Serl (Scap Zof3						1					i
	10:20		HAC-017	Isleboro D	isposal	Site Sed	1253043											1
					-1 -									1				
	~																	
<u></u>									ļ									

Relinquished	by:					Received by:	In charace	0	R-L	611	M.			<u>_</u>	la		l	
An	1 11	001		Date/T	ime		th stor age	C I	Vari	0110	0u	ixsv	7]	Date/T	ime	
//	when	Phn		05/03/02	1200	1	NÍDO	17					'	nGI	a		120	~
•							huns P	L	\sim	Martine property a later provide the	100 A 1000			071	0310	8	120	0
Relinquished	l by:					Received by:									*****		liitiona finalikuu saasaa aasaa aa	
				Date/T	ime								-]	Date/T	ime	
Comments:									*****						destructions provinces and			
																		Portugal and the second se
																		The second se

nquished by:		Da	te/Time	Keceived by:							*****	D	Date/Tin	ne
Mhih	pm	05/06/08	1700	Mill	P	N	L-		••		05 <i>l</i> a	6108	5	1700
nquished by:		Da	te/Time	Received by: In Story	c Q	Bo	Hal	110	Juxs	wy		D	Date/Tin	ne
010%	HAC-001 1-51 HAC-003 0-11	· · ·	\checkmark											
08	HAC-001 0-1'			ата кала не маке ма са ита на маке и на са се										
08	HAC-010-21-2						-		ļ					
108	HAC-010-0'-1'													
norse	HAC-007-2'-Bittom					+								
105	HAC-007-041													
	1+AC-005-2'-Bottom			9 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -										
1	HAC-005-1-2'													
108	HAC-005-0'-1'													
	HAC-009-2-21						1							
08	HAC-009-0'1'						1							
	HAC-008-2'-32'													
··	HAC-008-1'-2'		<u> </u>		23	ļ								
ilne	HAC-008-0-1	Brie	how on Se	0. mout (Hown for compassifi	is.									
ATE TIM	E BATTELLE ID CLIENT ID		SAMPLE	DESCRIPTION	PE	ď	FINGE	P,	Ň	Ш	MET	ΠO	ACID	PRESI
W	halp m	Methodson	ANALYSIS REQUESTED → "NUMBER OF CONTAINERS"						AC	BT	LALS	HER	IFIED	RVED

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

Proj. No	Proj. Name	***														
(-60644)	Seavax	of Harber														
SAMPLERS: Signature	il p W	h			ANALYSIS REQUE "NUMBER OF CON	STED → TAINERS"	F	~	H PRINT		-		R R	IED	VED	mber iners
DATE TIME	BATTELLE ID	CLIENT ID		SAMI	PLE DESCRIPTION		PES	PCI	TPI	PAI	VO/	TBC	OTHIO	ACIDII	PRESER	Total Nu of Conta
4/30/08 4/30/08 4/30/08	HAC-003-14 HAC-003-24 HAC-006-0	2' -69' 2-19'	Bucke	tsofs	ediment(HoLD f	en compos	itony	∂								
4/30/08 4/30/08 4/30/08 4/30/08	HAC-006- HAC-006- HAC-002-	1.9-3.6 3.6'-73' 0-1' 1-2'														
4/30/08 4/30/08 4/30/08	HAC-002- HAC-004- HAC-004-	2'-73' 0'-1' 1'-2'		Y												r 1 1
4/30/08	HAC-004-	⊋'-bottzm		₩							*****					<u> </u>
D = 1/2																***
Reinquished by:	n h c	and the second	Date	/Time	Received by: I	n storage	0	B>l	4011	e bi	uxbin	1		Date/	ſime	
Relinquished by:	phi		05/06/08	17:00	M	huhp	h	\sim	<u> </u>			0	5/061	108	17:	00
weiniquisited by:			Date	e/Time	Received by:									Date/1	lime	autodoriský kynosocial z klastické statu
Comments:																

RIGINAL

Battelle The Business of Innovation

Chain of Custody

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

- 41

Proj. No		Proj. Name	29999999999999999999999999999999999999														
C1 c	1.111 N	0.															
SAMPLERS	<u>Ro 4 4 1</u> E Sionature		étare autor	1				1					[]				
DI LIVLE LADICED					A	NALYSIS REQUESTED								59	~	0	a s
	JMT,	MPM, ARI	\leq		/// ///	JUMBER OF CONTAINERS"	L_		RIN	lanat	~		FS	83	EC	VEI	mbc
		· · · · · · · · · · · · · · · · · · ·					- È	CE	ERF	AF	10/	[B]	TA		DIF	SER	Nu
							, GLu	, and	1. 10	(reday)	Sec. 1		ME	O de	0	ÅE.	otal f Cc
DATE	TIME	BATTELLE ID	CLIENT ID		SAMPLE	DESCRIPTION			E.						~	<u>م</u>	ЕO
	015-18																
5/1/08	Hort-	Rick" - DYR - 1 - 1		Statur H													
51,108		PAC AN AV		I station H									ļ				ł
~5/3/04	85:80	1446-012		PP TOT	<u>. Kit Ågt p</u>	<u>4 < 0</u>						ļ	ļ			******	
	08:49	HHC-CI3			1			ļ				ļ					
	09:05	HAC BH															*****
	09:50	11219-1015		1 mars	Carlorano							ļ					
	10:05	1140 616		1	1												
1	10:20	HAR WIT											ļ	~			
Shios	13:45	HAC-005 0-1	1	Istation E								ļ	ļ	<i>x</i> *			/
51108	13:45	HAM-005 1-2	1	Station E					ļ					1. al			
1120108	09:50	HAC-8870-1	5	-atention (S-										wer ^d			Í
Thalas	09:50	HAC-0071-2	1	Islaman G													<u> </u>
51108	16:05	HAC-0090-1		Islabor I										"harder"			<u>(</u>
51108	16:06	HAC-28691-3		Istation I								ļ					1
51108	08:58	HAC-0100-1		Shatizm T										1			1
SHIOK	08:58	HAC- did 1'-S		shittin 5										hours.			(
5/1108	11:12-	MAC-BOILD'-	1	StrationA													
Relinquishe	d by:	1. 1.			ages à	Received by:							1		Data	·	
	IAA Same	a san s	ł	Date/	<u>11me</u>											nne	
and the second se	Marto	P. M.CC	n Nggan Mantana ang mang mang mang mang mang mang ma	05/06/08	11.10												
. 7	2	x , 64,		00100100	10.10												
Relinquishe	d hv:		****			Received by:							-				
				Date/	Time										Date/T	ime	
0									1				1				
Comments:	Ref: Dep:	3196	Date: 05/06/2008 Wort: 52.0 LBS	SHIPPING: SPECIAL	48.74 0.00	() MPM 05/12/08	- mi	lip	y tim	e inc	ome	ctly	1 209	ged	α	core	r'
			DU. 0	HANDLING:	0.00	sanpl	ing le	29	1			•				,h	
			U. U		70.14		/	5									
		Sves	S: PRIORITY OVERNI TRCK: 9572 3375 9	IGHT 598											1999 - C. S. S. S. San (1997)		
	P		INGN: 3072 0070 0			A Marine Marine								in and the second	in Martin		
															2N	r co	Pγ

Proj. No		Proj. Nam	16														
(theada	401	Spai	1500A Harbor														
SAMPLERS	: Signature						1	-						T			
	and the second	N. A. and the second second				ANALYSIS REOUESTED			june Say							~	ين سۇ
	J.Mt.	MPM, AEA	4			"NUMBER OF CONTAINERS"	Errori		RIN				ES	20	ED	VEI	nbe
*******						J	- Si	PCB	ERP	AH	V0/	LB1	TA	H	DIF	ER	Nun
							- Salar	, proven	, Ö	Janpa			ME	- 5 <u>2</u>	CI	RES	otal f Co
DATE	TIME	BATTELLE	ID CLIENT ID		SAM	IPLE DESCRIPTION			L.							a	Еõ
r1.1.0	11.17	Inta 221	13 100. 1											<u>v</u>			
21100	11.1 hom	<u>na c- co -</u>		- Stapank													
150108	how hards	HAL-PO3-	· 0 · +• 1 ·	Istation	s 									\checkmark			
HSOLUS	16 . 4.62	HAC WOS		- station	<u> </u>									A name			
750108	11:20	MAC-PPG	- <u>9-1-7-</u>	Stanonte													<u> </u>
112102	11.54	1140-004	9 - 4	SPANAVIT	91 Mar 200									harr			
aborda	16.76	1310	S - Bard And	STADOVI I	e e									3			
1120100	12.4.2	I TINC- QUE		STELLOV	<u>}</u>									Sear .			
41240	12.58	LIAN AK		Skiller	2												4
11246	10.66	HIAA-ANI		Stor have 1	K									Lanna			
-21-20/10		THAT WAS	7 10 C 1 1 1 2 -		¥												+

											1						
	hinte hit hit we had een deel een die deel de die die die die de de deel de een de een die een die een die de																
Relinquished	l by:					Received by:			L		1	L					
AAA	· 1 1 2	2 1.1.1		Date	/Time										Date/T	ime	
- Mh	while to	MAG	Nonana in an ann an an an an	nalactos	16.11												
,	, ,		0	C NOVINS		Ø											
Relinquished	l by:				1	Received by:										•••••	
				Date	/Time]	Date/T	ime	
															·····		
Comments:				1	1												
																	i

Battelle The Business of Innovation

Chain of Custody

78gp

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

OPY

Proj. No		Proj. Name	4 4 4		4e ¹⁷												
13606	991		art Harbor					Y									
SAMPLERS	: Signature Mrs.L	1 Ph	han da		ja V	ANALYSIS REQUESTED	Lung Con	8	H PRINT	pagani Ladara	A	ferrer	ALS	EK	FIED	SVED	ainers
DATE	TIME	BATTELLE ID	FIFL) CLIENT ID		SAMPLE DESCRIPTION				TPI	PAI	V0.	a B	MET/	OTH	ACIDII	PRESEF	Total Nu of Cont
29/01/08 05/02/08	18:30 2 11:00		ЦАС-ФЦ НАС-ФІВ	yibracori sedimma	é calch I-grat	e rinsate blank											1
				An index for the base of the same of the s						****							
				and a second and a s		the strength of the second strength of the se						1999 - 19					
	The function of the function o	and a second					The Contraction					****					
Relinquished	l by:					Received by:											****
Mail PM			Date 05/06/08	Date/Time Date 05/06/08 11:30 Matthew & forfel 5/6/08 5/6/08				Pate/Tin	1e 130								
Relinquished by:			Date	e/Time	Received by:						****		D	Pate/Tin	ne		
/11.4 19 12	for for	- Josh che		5/6/08	1230	Ref: Dep: 3196	Da Wg	te: 05 t: 5.0	5/06/2 D LBS	008	SI	HIPPI PECIA	NG : L. :	5 1	. 29 . 39		
Comments:							DV	:		Ø	.00 T(ANDL I OTAL :	NG :	0 6	.00 .68		
Vedeslar or non-sourcement second						51	/cs: P TRCI	RIOR: <: 95	(TY 0) 72 33	VERNI 875 8	GHT 532	****					

a

Chain of Custody

141	Sears po	nt Harbor								******					
Signature Mh	ill pr	<u> </u>	ANAI "NUN	LYSIS REQUESTED	T	E E	H PRINT	н	A		ALS	ER	FIED	XVED	umber ainers
TIME	BATTELLE ID	FIELD CLIENT ID	SAMPLE DESCRIPTION		PES	PC	FINGER	ΡA	οΛ	TB	MET/	ОТН	ACIDI	PRESEI	Total Nu of Conti
18: 3 0 11:00	Q2811 Q2817	HAC-Ø11 HAC-Ø18	vibracone catcher Sediment grab rin	nnsate blank Nate blank		> >		>							1
							~								
by:			Date/Time	Received by:	<u> </u>		$\frac{1}{1}$						Date/T	ime	
Mucht phia			05/06/08 11:30	Jannine-	Stephet						51	610	8	11:	35
uy.			Date/Time	Received by:	<	J							Date/T	ime	
	141 Signature MM TIME 18:30 11:00	141 Sears po Signature Mill P V TIME BATTELLE ID 18:30 Q2811 11:00 Q2812 by: Mill P Mill P V Sears po	141 Sears port Harber Signature Mill P TIME BATTELLE ID 18:30 Q2811 11:00 Q2812 HAC-Ø18	141 Searsport Harbor Signature ANA Mill P ANA TIME BATTELLE ID IS 70 Q2011 HAC-Ø11 Vibracore catcher IJ:00 Q2012 HAC-Ø18 Sediment grab tiv by: Date/Time 05/00/08 11:30 by: Date/Time	141 Searsport Harber Signature ANALYSIS REQUESTED \rightarrow "NUMBER OF CONTAINERS" TIME BATTELLE ID FIED SAMPLE DESCRIPTION 18:\$0 Q28:11 HAC-Ø11 Vibracore catcher missate blank 11:00 Q28:12 HAC-Ø18 Sediment grab rinsate blank by: Date/Time WMM PM 05/06/08 by: Date/Time Received by: Date/Time	H Sears pert Harber Signature ANALYSIS REQUESTED \rightarrow "NUMBER OF CONTAINERS" TIME BATTELLE ID FIED CLEARNT ID SAMPLE DESCRIPTION 18 © Q2811 HAC-Ø11 vibracore catcher runsate blank v 11 00 Q2812 HAC-Ø18 Sectionent grab runsate blank v by: Date/Time Received by: Contended by: Contended by: Date/Time Date/Time Received by: Contended by: Contended by:	H Seaspert Horber Signature ANALYSIS REQUESTED \rightarrow "NUMBER OF CONTAINERS" TIME BATTELLE ID FIG.0 SAMPLE DESCRIPTION 18 \textcircled{O} Q2011 HAC-Ø18 Sediment grab timeste blank V V	Hill Seaspert Harber Signature ANALYSIS REQUESTED -> "NUMBER OF CONTAINERS" Battelle ID TIME BATTELLE ID FIED GHINT ID SAMPLE DESCRIPTION Battelle ID 18 @2 Q2811 HAC-Ø111 VIBFacore catcher misate blank V 11 00 Q2812 HAC-Ø18 Sechwert grab riniate blank V V Date/Time Date/Time Received by:	Intermediate Steparate ANALYSIS REQUESTED \rightarrow Mult p Mult p ANALYSIS REQUESTED \rightarrow TIME BATTELLE ID FIELD GE TIME BATTELLE ID GE COMPLETED Sample Description If the colspan="2" of t	Image: Search of the star Analysis Requested \rightarrow Signature Analysis Requested \rightarrow Image: Search of the star Image: Search of the star Imag	Intermedia Stars port Harbor ANALYSIS REQUESTED \rightarrow "NUMBER OF CONTAINERS" TIME BATTELLE ID Field Generation Sample Description IS $\frac{1}{20}$ TIME BATTELLE ID Generation of Containers" TIME BATTELLE ID Field Generation of Containers" TIME BATTELLE ID HAC-Ø11 Vibracong calcher misate blank V V Date/Time Received by: Date/Time Received by: Date/Time Received by: Date/Time Date/Time Date/Time Date/Time	Intermine ANALYSIS REQUESTED \rightarrow Starsport Harber MULL PM ANALYSIS REQUESTED \rightarrow Intermine Intermine Intermine Intermine ANALYSIS REQUESTED \rightarrow Intermine Date/Time Date/Time	11) Searsport Hotor Signature ANALYSIS REQUESTED → "NUMBER OF CONTAINERS" If Hard of A 1100 BATTELLE ID FIED HARC-Ø11 Vibracore catcher misate blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 1100 Q2812 HAC-Ø18 Sectione of grab riniale blant V 11100 DaterTime Received by: Steriling Steriling	Mill P ANALYSIS REQUESTED -> INVISION P INVISI	Mill Searsport Harter Stemane ANALYSIS REQUESTED \rightarrow NUMBER OF CONTAINERS" IS IS

ATTACHMENT B

COMPOSITE PREPARATION LOGS AND CUSTODY RECORDS

This page left intentionally blank

Project: USACE NAE, Searsport Harbor, ME Project #: G606441 Survey ID: HAC

Initials	AEM	Date_	5/14/08	Composite ID HAC-0	19
Site Location	Searsport,	ME_		Other	

Sample ID	Station	Volume Used	Date/Init
HAC-003 /	$\frac{-2}{2}$ A	annon tearrainna an	
HAC -001-0	L'A	500 ml	
HAC-002-0	1' B	570° m/	
HAC-002-1	-21 6	500 ml	
HAC-003-0	110	500 m1	

Sample was mixed _____ by hand in a bowl, bucket or glass dish + with hond mixer _____ in an epoxy-coated mixer

Sediment Split Designation

Aliquot Code	Parameter	Container Type for Sediment	Volume to Fill	Container Type for Water	ID	Ship To
A	Grain Size	250 ml (8oz) I-chem wide-mouth jar	¾ full	NA	NA	AMS
В	TOC	125 ml (4oz) I-chem wide-mouth jar	³ ⁄4 full	NA	HAC-019	AMS
C	Organics – PAH/PCB/PEST	250 ml (8oz) I-chem wide-mouth jar	¾ full	1-L pre-cleaned amber glass		Duxbury
D	Metals	2oz pre-cleaned and tared Spex jar	³∕4 full	500 mL pre- cleaned Teflon		Sequim
E	Archive (Frozen)	500 ml (16oz) I-chem wide-mouth *	¾ full	NA		Duxbury
F	Archive (Unfrozen)	500 ml (16oz) I-chem wide-mouth **	¾ full	NA	V	Duxbury
G	Atterberg Limits	250 ml (8oz) I-chem wide-mouth jar	³∕4 full	NA	ENA	AMS

* Store at -20° C

Reviewed By: Mull P. M. Date: 05/14/08

Project: USACE NAE, Searsport Harbor, ME Project #: G606441 Survey ID: HAC

Initials	LAEM	Date 5/14/08	Composite ID HAC-020
Site Location_	Searsport	Harbo	Other

Sample ID	Station	Volume Used	Date/Init
HAC -004 0-1'	\mathcal{P}	500 ml	JMF 5/14/08
HAC-004-1-2'	D	Í	
HAC-006-0-1.91	F		
HAC-006 19-36	F	\checkmark	

Sample was mixed ______ by hand in a bowl, bucket or glass dish + whend mixer

Sediment Split Designation

Aliquot Code	Parameter	Container Type for Sediment	Volume to Fill	Container Type for Water	ID	Ship To
A	Grain Size	250 ml (8oz) I-chem wide-mouth jar	3⁄4 full	NA		AMS
В	TOC	125 ml (4oz) I-chem wide-mouth jar	3⁄4 full	NA	HAC-020	AMS
С	Organics – PAH/PCB/PEST	250 ml (8oz) I-chem wide-mouth jar	³∕4 full	1-L pre-cleaned amber glass	Y.	Duxbury
D	Metals	2oz pre-cleaned and tared Spex jar	⅔4 full	500 mL pre- cleaned Teflon		Sequim
Е	Archive (Frozen)	500 ml (16oz) I-chem wide-mouth *	¾ full	NA		Duxbury
F	Archive (Unfrozen)	500 ml (16oz) I-chem wide-mouth **	¾ full	NA		Duxbury
G	Atterberg Limits	250 ml (8oz) I-chem wide-mouth jar	³ ⁄4 full	NA		AMS

* Store at -20° C

Reviewed By: Millem Date: 05/14/08

Project: USACE NAE, Searsport Harbor, ME Project #: G606441 Survey ID: HAC

Initials <u>JMF / AEM</u> Date <u>5/14/08</u> Composite ID <u>HAC-021</u> Site Location <u>Sequeport Harbor</u> ME Other

	Sample ID	Station	Volume Used	Date/Init					
	HAA-005 1-2"	° & E	250ml 250ml	5/14/08 JMF					
	HAC-007 9-2	G	250 m/ 250 m/						
	HAC-008 1-2	H	250 ml 250 ml						
	HAC - 009 5-2.	I	250ml 250mi						
Sar	Sample was mixed by hand in a bowl, bucket or glass dish								
		in an e	poxy-coated mixer bucket	ul hond miner					

OS/B E JMF Slivloj

Sediment Split Designation

Aliquot	Parameter	Container Type	Volume	Container Type	ID	Ship To
Code		for Sediment	to Fill	for Water		
A	Grain Size	250 ml (8oz) I-chem wide-mouth jar	3⁄4 full	NA		AMS
В	TOC	125 ml (4oz) I-chem wide-mouth jar	¾ full	NA	HAC-D21	AMS
С	Organics – PAH/PCB/PEST	250 ml (8oz) I-chem wide-mouth jar	¾ full	1-L pre-cleaned amber glass		Duxbury
D	Metals	2oz pre-cleaned and tared Spex jar	¾ full	500 mL pre- cleaned Teflon		Sequim
E	Archive (Frozen)	500 ml (16oz) I-chem wide-mouth *	¾ full	NA		Duxbury
F	Archive (Unfrozen)	500 ml (16oz) I-chem wide-mouth **	¾ full	NA	L	Duxbury
G	Atterberg Limits	250 ml (8oz) I-chem wide-mouth jar	³ ⁄4 full	NA		AMS

* Store at -20° C

Reviewed By: Mull Pm Date: 05/14/08

Project: USACE NAE, Searsport Harbor, ME Project #: G606441 Survey ID: HAC

Initials JMF/AEM	Date 5/14/08	Composite ID HAC-022
Site Location Seassont	Muba	Other

Sample ID	Station	Volume Used	Date/Init
HAC-0100	D-11 J	750 ml	5/14/08 JMF
HAC-010 1	12/ 5	750 ml	V
Sample was mixed _	by hand	in a bowl, bucket or glass di	sh

in an epoxy-coated mixer in buchet ut hand mixer

Sediment Split Designation

Aliquot Code	Parameter	Container Type for Sediment	Volume to Fill	Container Type	ID	Ship To
A	Grain Size	250 ml (8oz) I-chem wide-mouth jar	³ ⁄4 full	NA		AMS
В	TOC	125 ml (4oz) I-chem wide-mouth jar	³ ⁄4 full	NA	HAC-022	AMS
С	Organics – PAH/PCB/PEST	250 ml (8oz) I-chem wide-mouth jar	³ ⁄4 full	1-L pre-cleaned amber glass		Duxbury
D	Metals	2oz pre-cleaned and tared Spex jar	3⁄4 full	500 mL pre- cleaned Teflon		Sequim
E	Archive (Frozen)	500 ml (16oz) I-chem wide-mouth *	3⁄4 full	NA		Duxbury
F	Archive (Unfrozen)	500 ml (16oz) I-chem wide-mouth **	3⁄4 full	NA	Į	Duxbury
G	Atterberg Limits	250 ml (8oz) I-chem wide-mouth jar	³ ⁄4 full	NA	an a	AMS

* Store at -20° C

Reviewed By: Mul PM Date: 05/14/08

Custody Records

This page intentionally left blank

Battelle

ShpNo SHP-080520-01

The Business of Innovation

Battelle Project No:

Sample Receip					Appro	ved: 🔲 Authorized 🔲
Project Number:	G606441		Client:			
Received by:	Seyfert, Jeannine	<u>5</u>	Date/Tim	e Received:	Thursday, May 15, 20	008 12:00 AM
No. of Shipping Con	tainers: <u>1</u>		•			daaliinaalii ii biinaanaa Janeiinaaliaa kargoonnoo qorayo oo sossa oo sossa oo soo oo soo oo soo oo soo oo soo
SHIPMENT		***				
Method of Delivery:	Hand Delivered		Tracking	Number:	NA	
COC Forms:	Shipped w	ith samples	🗌 No Forms	5		
Cooler(s)/Box Cntr Type	r<i>(es)</i> Tracki	ng No.	Seal S	eal Condition	Container Condit	ion Temp C Smps
1 of 1 No Contain	er N	A	None N	Not Applicable	Not Applicable	0.0 10
Samples						
Sample Labels:		Sample label	s agree with C	OC forms		
		Discrepancie	s (see Sample	Custody Corre	ective Action Form)	
Container Seals:		☐ Tape ☐ C ✓ Seals intact fo ☐ Seals broken	ustody Seals or each shippi (See sample l	Other Sea ng container og for impacte	ls (See sample Log) d samples)	
Condition of Samples:		Sample conta	iners intact iners broken/l	eaking (See C	ustody Corrective Act	ion Form)
Temperature upon rec (Note: If temperature u	c eipt (°C): pon receipt differ	0 To	emperature Bl conditions, see	ank used	Yes 🗹 No omment field)	
Samples Acidified:		Yes No	Unknov	wn		
Initial pH 5-9?: If no, individual sample	e adjustments on	Yes No No the Auxiliary San	☑ NA nple Receipt F	orm		
Total Residual Chlorin If yes, individual sample	ne Present?: e adjustments on	Yes No No the Auxiliary San	✓ NA nple Receipt I	^r orm		
Head Space <1% in sa Individual sample devia	mples for water ations noted on so	VOC analysis: <i>umple log</i>	Yes	No 🗹 N	A	
Samples Containers: Samples returned in PC	-grade jars:	✔ Yes 🗌 No	Unknov	vn /Lot No.:	UnKnown	
Storage Location:	Chem Nort	h: Freezer - F000	2 (Walk-in)	BDO I	Ds Assigned: Q2	888 - Q2897
Samples logged in by	: Seyfert, Je	annine		00,000,000,000,000,000,000,000,000,000	Date/Time:	05/15/2008 12:00 AM
Approved By:					Approved On:	
Authorized By:					Authorized On	

ShpNo SHP-080520-01

Battelle Project No:

Approved:

Battelle

The Business of Innovation

Sample Receipt Form Details

Client:

Project Number: G606441

Receive	ed by:	Seyfert, Jeannine	Date/Tir	ne Received: Thu	ırsday, M	lay 15, 2008 12:	00 AM	A STATEMENT AND A STATEMENT AN	A. 2000.00.000.00.00	é				
No. of S	Shipping Co	intainers: 1												
BDO Id:	Client Sam	Iple ID:	Collection Date:	Login Date:	Ctrs:	Matrix:	Temp	Hď	ПВС	со Со	Stored In:	Loc:	No: Comments:	
Q2888	HAC-012		05/02/08 8:28	05/20/08 9:01	-	SEDIMENT	0	NA	NA	AN	F0002 (Walk-in)	BIN	5	
Q2889	HAC-013		05/02/08 8:49	05/20/08 9:04	•	SEDIMENT	0	ΝA	ΝA	٨A	F0002 (Walk-in)	BIN	2	
Q2890	HAC-014		05/02/08 9:05	05/20/08 9:04	,	SEDIMENT	0	ΝA	ΝA	٨A	F0002 (Walk-in)	BIN	53	
Q2891	HAC-015		05/02/08 9:50	05/20/08 9:05	-	SEDIMENT	0	ΝA	ΝA	٨A	F0002 (Walk-in)	BIN	2	
Q2892	HAC-016		05/02/08 10:05	05/20/08 9:05	-	SEDIMENT	0	AN	Ν	٨A	F0002 (Walk-in)	BIN	2	
Q2893	HAC-017		05/02/08 10:20	05/20/08 9:05	-	SEDIMENT	0	٨A	ΝA	٨A	F0002 (Walk-in)	BIN	2	
Q2894	HAC-019		04/30/08 12:26	05/20/08 9:05	-	SEDIMENT	0	AN	NA	ΝA	F0002 (Walk-in)	BIN	2	
Q2895	HAC-020		04/30/08 10:55	05/20/08 9:06	-	SEDIMENT	0	ΝA	NA	٨A	F0002 (Walk-in)	BIN	0	
Q2896	HAC-021		04/30/08 9:50	05/20/08 9:08	-	SEDIMENT	Ö	NA	٨A	٩N	F0002 (Walk-in)	BIN	02	
Q2897	HAC-022		05/01/08 8:58	05/20/08 9:08	-	SEDIMENT	0	NA	NA	NA	F0002 (Walk-in)	BIN	2	
Total Sa	amples:	10												

Total Samples:

Page 1 of 1

Battelle The Business of Innovation

Chain of Custody

Deliver to BATTELLE Dixbur Gwm Lab 397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

Proj. No	Proj. Name		
GLOGHYI	Sauso	at Karbas ME	
SAMPLERS: Signature	TMF + AE	, W	Potra State Constraint
			PCCONTAINERS
DATE	BATTELLE ID	CLIENT ID	SAMPLE DESCRIPTION
5/2/08 0828	Y HAC-OIZ	88800	Releience Schement 8805 V V
0849	HAC-03	02889	
00105	HAC - OLY	03890	
0950	Y HAC-OIS	<u>Q3891</u>	
1005	HAC-OIL	02892 2222	
1020	HAC - Ø17	62845	
413000 1326	HAC-Ø19	QUASH	COMPOSITE / Sodiment from STATION A, BrC /
1005	HAC-020	Q2895	2 Diff / /
4 0150	HAC-031	96820	3 E46HI
5/1/08 085	8 HAC-022	Q2897	
	Annungen and a second		
Relinquished by:			Receiged by:
	11		Date/Time
Jessie	Infarm?		3/5/08 0900 /JERNNUR Deyfrit. 5/15/08 0900
Relinquished by:			Date/Time Date/Time
		L	
Comments:			

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

RIGINAL

Battelle The Business of Innovation

Chain of Custody

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

	umber ainers	Total N ano fo	-	~											_		44	
	SAED	PRESE							╈					ime	1130	ime	12	
	EIED	VCIDI	>	Y										Date/Ti	dí	Date/T	0	-
	ਮੁਤ	HTO													6/0		10	
	ST₩	MET	$\left \right\rangle$	\											5		50	
	Т	ET																
	۷	ΟΛ			\square				\downarrow									
	H	₩ ₩ G			<u> </u>	X		_	\downarrow			_	\downarrow					
	H	TPINGER	$\left \right $		_			_	_				1					
	8	ЪС						_	+	_	-	-/-	-		J			
	T	ьег			+		$\left \right $	_	+		+	\mathbb{A}			Ľ			
	ANALYSIS REQUESTED	SAMPLE DESCRIPTION	vibracae cakine misate black	sediment grad miste blank										Date/Time	05/06/08 11:30 M.Mhurk A	Received by: Date/Time	5/6/08 1230 M South	
ort Harbor			HAC-DI	H4C-018											i		ì	
Proj. Name	1 P.M.	BATTELLE ID	2891.1	2891.2											ph		Ky hale	
Iнh	Mhr	TIME	18:30	11:00				-						by:	Whit	by:	X -	
Proj. No (5606	SAMPLERS	DATE	0401/08	0/20/20	1									Relinquished	C.	Relinquished	M. Mr	Comments:

Searsport Harbor, Analytical Chemistry, Sediments and Rinsate Blanks

RIGINAL

Page 15 of 21

cc: Project Manager/Central File Login File

2891

SAMPLE LOGIN (SOP# MSL-A-001)

Project Manager: Brandenberger Date Received: 05/07/08 Batch: 1

)
Searsport Harbor
PROJECT:

		BATTELLE				COLLECTION	
SPONSOR CODE	Site Description	CODE	MATRIX	STORAGE LOCATION	PARAMETERS REQUESTED	DATE	INITIALS
HAC-011	Vibracore Catcher rinsate blank	2891-1	water	Prep Lab L-3-C	metals	05/01/08	MLFM
HAC-018	Sediment Grab rinsate blank	2891-2	water	Prep Lab L-3-C	metals	05/02/08	MLFM

gants had ?

LOG-IN CHECKLIST	Sears port Ha	1500	Reference	2 SOP# MSL-A-001
287/ Central File #: New	Sample No(s): 1-2	Pro	oject Manager: _ FN	ms
TO BE COMPLETED BY PROJEC	T MANAGER (prior to arriv	val when possible)	an sanganggan sa	an a
Matrix: <u>DI L</u> Ves No	vater	WP# <u></u> _ <u></u> ω8	1819	
Navy-type Projec	ct (requires high-level sampl	e tracking procedure:	5)	
Filter Samples:	Amount: En	tire sample	Half of sample]
Freeze dry samp	le(s) – samples will be weight	ed and placed in ultra	ow temp freezer (Lal	o# 130)
Special instruction	DNS:			
Sample Preservation Instruct	ions: <u>Preserve</u>	d in the fie	Id	
Date To Archive:	Date	To Dispose:		
TO BE COMPLETED UPON S	AMPLE ARRIVAL/LOG-I	N		
Yes No N/A Indicate	in Appropriate Box			
Was a cu	stody seal present?			
Was the	custody seal intact?			
Mk Was cool	er(s) temperature(s) within	acceptable range of	4±2°C or frozen?	<u>5,0 °c</u>
(if multi	ple coolers, note temp. of ec	ach)		3°
Was Proje	ct Manager notified of any nt/Remedy:	custody/login discrep	ancies (cooler temp, s	ponsor codes, etc)?
Were <u>all</u> c	hain of custody forms signe	d and dated?		
Were san	uples filtered at MSL?			
	and a second		भाक समाज स्थान के संस्थान	
Sample condition(s):	Acceptable) Oth	ter (explain):		
Pantoinan tamat			And and the addressing on the case of a set of the set	
container type:		iex		
Notes:				
- FO	DA .		05707	
Completed Br.	Slah	Date/Tim	e: 106/08	1244
SAMPLE PRESERVATION			701~	
Sample(s) were preserved	l at MSL			
Sample(s) were preserved	prior to arrival at MSL (no	ted on CoC / Sample /	per PM Instruction)	
Bandom nH checked for ~	10% of samples (use din nan	en) Sample TD	- 1891.2	OK
Complete pld sheek require			s. <u>2077 2</u>	<u> </u>
	ed for project (use pri mere	er and record on pfi k	ecora torm)	
If preservation necessary, recor Type: 0.2% HNO3	'd Acid Lot# Notes:			
0.5% HCl (Ha sam	nles) Notes:			
Refrigerate/Free	ze Note:			
d Other	Notes:			
	14			
Completed By:	Vah	Date/Tim	e: 05/67/08	1255
tevsed 033006		1-3-C		

Searsport Harbor, Analytical Chemistry, Sediments and Rinsate Blanks

Battelle The Business of Innovation

Chain of Custody

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

Proj. No	NAMES OF A DESCRIPTION OF	Proj. Name											
G606	५५)	Searsa	ant Haubar										
SAMPLERS: Si	gnature												
	JMF,	MPM, AEM		"NU"	ALYSIS REQUESTED → MBER OF CONTAINERS"	E	PRINT P	∀ H	Ţ	STN	ered Ser Ered Ered Ered Ered Ered Ered Ered Er	(AED	umber umber
		var og retrakter til				bCI bE2	INGER LPI	[∀d	LB.	META	ACIDII Africo ACIDII	ывае	rotal Nu otal Nuts
DAFE	IIME	BAITELLEID	CLIENT ID	SAMPLE D	ESCRIPTION		E				Ð	ł) L
5/1/08	1618	HAC-008-1'-2'		stach an H									1
511 108	16(8	HAC-008-0-1		Stahon H							7		/
5/2/08 (32:80	HAC-012		BBDS Release	0						7		/
-	28:49	HAC-DI3		, ,									/
	79:05	HAC-OH		~							7		/
-	09:50	HAC - OIS		IDS Relevence	~						7		/
	0:02	HAC-OIL									7		
~	0:20	HAC - 617									7		\ \
5/1/08	13:45	HAC-005 0-11		station E									1
5/1/08 1	3 45	HAC-005 1-21		skuhen E									/
130108	09:50	HAC-00 7 0'-1'		station G		an early a sub-second and stand and sub-second sub-second and sub-second sub-second sub-second sub-second sub-					\ \		1
130/08	09:50	HAC-0071-21		station G									/
511/08	16:05	HAC-BOGO'-1'		station I							5		~
5/1/08	20:91	HAC-00991-2		stahon I							>		-
3/1/08	08: 58	HAC-DID 0'-11		Stertion J						-	2		_
51108	08:58	HAC-010 1-31		stution S							2		/
5/1/08	11.12	HAC-0010-11		stationA									
Relinquished by	, 	. ,		Date/Time	Received by:						Dat	s/Time	
M	In D	P. Mch-		05/06/08 16:10	Stephanin CSM	COL				THE A	108	5:6	54
Relinquished by					Received by:					•			
				Date/Time							Dat	≥/Time	
													daaraadhadhadhadhadhadhadhadhadhadhadhadhadh
Comments:		KN124000 00 m m						a mainta a buint an maintain an ann	delle frankrissendelse kalsen mådet kon			A PROPOSITION AND A PROPOSITION OF THE PROPOSITION	

A N N

p162

Chain of Custody

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

Proj. No	Proj. Name										
SAMPLERS: Signature	Jear Sp	rout Haviber									
JMF	, MPM, NEM		AN4	ALYSIS REQUESTED → IMBER OF CONTAINERS"	E H	H	¥.	SJA		BAED	ainers.
DATE	BATTELLEID	CLIENT ID	SAMPLE D	ESCRIPTION	bC	PA	α1 ΟΛ	MET	ISLINELD. HILO	PRESE	Total N 100 Total N
5/1/08 11:12	- HAC-001-1-	<i>5</i> -	stutut						>		
120108 2:2	6 HAC-603-01	- j č	Strand						2		,
130108 12: Zu	6 H/AC 2013 - 1	12-	station o						7		Į
1.1.10% 11:30	HAC-BOK - C	3-1.91	Station F						2		
112/108 11:30	- HAC -006-	1.91-3,61	Startion F						51		
UR108 11:36	HAV-0010-	3.6-22	Station F						<u>s</u>		Ĵ
4130108 15:2	- 600-JAH 5	,1-0	Station. 13						7		, 1
120108 15.71	- 200-201 5	10-1	Station R						>		~
4/20/08 10 5	5 440-004-1	-1. 	Station D						>		
Under 10. 5	C UXN-NVU 2	1-21	2 milias						7		
···· ontoch	- 4 Ard 144 -	8									4
Relinquished by:			Date/Time	Received by:	na na dula nia mangana na panana na hana na hana na hana na hana na hana na ma	generation and an and the and the second second	on the second	and the second se	Da	te/Time	
Mull,	p Muli		05/06/08/10:10	Stephanics	aver				108	8	元子
)					5)) 	-	5
Relinquished by:			Date/Time	Received by:					Da	te/Time	
Comments:										<	\langle
										Ř.	6
											\$

RIGINAL

Ship to: HMS

Battelle The Business of Innovation

Chain of Custody

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

RIGINAL

South and the

Battelle The Business of Innovation

Chain of Custody

Shipton Katter Source

397 Washington Street Duxbury, MA 02332 Phone: 781-952-5200 Fax: 781-934-2124

	naber siners	Total Nutration Total Nutration	-																										≻
-	MED	ывезен						_	, r.			+			+	+		$\left \right $	e e		400		me						, cop
F	EED	VCIDI	+							+	+		1	╈	+				ate/Tin			-	ate/Ti						L T T
1.5	ਬਤ	HTO	+							Ť	1	+	╡	•	╈		\uparrow			1	5/08	2							
	ST	META		7	7	Ż	V	1		4	>	2		1		T				ľ	2								Ц
÷.	·	'ar								1											<u> </u>					1			
·	¥	ΌΛ						:																					
	H	ſ∀ď																											
	PRINT F	FINGER																											
	. 6	PCI																											
. *	Т	5HA																_			Y			-2-					
	ANALYSIS REQUESTED → "NUMBER OF CONTAINERS"	SAMPLE DESCRIPTION	Polonne Chimmed RATS			Colorando Sarginano 125			Service & Line Summer R. C.	Second Acres Sinney D.F.	Societ + Lever Sherrich F. 6. H. T.	Sadwarvers Lean Stanoul J	ę						Date/Time Received by:		ships 1000 Ant most	Banairad hvv	Date/Time				1		
m + Harbard		CLIENT ID	2891.3	7	5~	e	£ 0.	8	6	0	//	2891.12															lay.		
Proj. Name	F + AE M	BATTELLEID	HAC - 013	HAC-013	HAC OLY	NHC OIS	HAC DIG	HAC OIT	HAC-DIG	HAC-DZO	HAC-021	NBC-CS-28H								× . /	mark						28:28 The sligh		
2004441	J	TIME	Xering (08.49	09:05	0360	10.0S	1020	12.2.6	1055	0350	0859							by: "		Hear	,			• 4• *		O SI& C	(0
Proj. No		DATE	5/0108	\$10105					4120108	-	->	5140%							Relinquished			Palindichad	A REAL PROPERTY AND A REAL			Comments:			

cc: Project Manager/Central File Login File

2891

SAMPLE LOGIN (SOP# MSL-A-001)

Project Manager: Brandenberger Date Received: 05/15/08 Batch: 2

Searsport Harbor
PROJECT :

		BATTELLE			PARAMETERS	COLLECTION	
SPONSOR CODE	Site Description	CODE	MATRIX	STORAGE LOCATION	REQUESTED	DATE	INITIALS
HAC-012 🗸	Reference Sediment BBDS \checkmark	2891-3 🗸	sediment	Deep Freezer B-1	metals	05/02/08	MLFM
HAC-013	Reference Sediment BBDS	2891-4	sediment	Deep Freezer B-1	metals	05/02/08	MLFM
HAC-014	Reference Sediment BBDS	2891-5	sediment	Deep Freezer B-1	metals	05/02/08	MLFM
HAC-015	Reference Sediment IDS ✓	2891-6	sediment	Deep Freezer B-1	metals	05/02/08	MLFM
HAC-016	Reference Sediment IDS	2891-7	sediment	Deep Freezer B-1	metals	05/02/08	MLFM
HAC-017	Reference Sediment IDS	2891-8	sediment	Deep Freezer B-1	metals	05/02/08	MLFM
HAC-019 🗸	Sediment from Station A,B,C 🗸	2891-9	sediment	Deep Freezer B-1	metals	04/30/08	MLFM
HAC-020	Sediment from Station D,F	2891-10	sediment	Deep Freezer B-1	metals	04/30/08	MLFM
HAC-021	Sediment from Station E,G,H,I	2891-11	sediment	Deep Freezer B-1	metals	04/30/08	MLFM
HAC-022 V	Sediment from Station J	2891-12 ✓	sediment	Deep Freezer B-1	metals	05/01/08	MLFM

Searsport Harbor, Analytical Chemistry, Sediments and Rinsate Blanks

Central File #: 2891 Sample No(s): 3-12 Project Manager: Brancleybers.
TO BE COMPLETED BY PROJECT MANAGER (prior to arrival when possible)
Matrix: WP#
Yes No
Navy-type Project (requires high-level sample tracking procedures)
Filter Samples: Amount: Entire sample Half of sample
Freeze dry sample(s) - samples will be weighed and placed in ultralow temp freezer (Lab# 130)
Special instructions:
Sample Preservation Instructions:
Date To Archive: Date To Dispose:
TO BE COMPLETED UPON SAMPLE ARRIVAL/LOG-IN
Yes No N/A Indicate in Appropriate Box
Was a custody seal present?
Was the custody seal intact?
Was coolen(a) temperatura(a) within accontable range of A=2°C on fragence al ed
(if multiple coolers, note temp. of each)
1 120/1 Was Project Manager natified of any custody/login discremencies (region temp. spansor codes at 1)
Comment/Remedy:
Were all chain of custody forms signed and dated?
Were samples filtered at MSL?
Sample condition(s): (Acceptable Other (explain))
Container type: Teflon Poly Glass Spect Other
Notes:
completed By Do State Date/Time: 05/15/68 14/08
SAMPLE PRESERVATION
Sample(s) were preserved at MSI
Sample(s) were preserved prior to arrival at MSL (noted on CoC / Sample / per PM Instruction)
Random pH checked for ~10% of samples (use dip paper) Sample IDs:
Complete pH check required for project (use pH meter and record on pH Record form)
If preservation necessary, record Acid Lot#
Type: 0.2% HNO3 Notes:
0.5% HCl (Hg samples) Notes:
Refrigerate/Freeze Notes: 10 n Jan B-1
Other Notes:
Completed By: Man Date/Time: 215708 1400

Revsed 033006

This page intentionally left blank

ATTACHMENT C

SEDIMENT CHEMISTRY DATA

This page left intentionally blank

Geotechnical Data

This page intentionally left blank

QUALITY CONTROL RESULTS

Client:	Battelle
Project Title:	Searsport Harbor
Project Number:	G606441
Client Sample ID:	HAC-010 0'-1'
AMS Sample ID:	8C8-15

AMS Project Number: 8C8 Date Sampled: 5/1/2008 Date Analyzed: 5/8/2008 Matrix: Sediment Method: ASTM D 422 Batch: 050808-01G

] Dian	Particle neter Range (mm)	U.S. Standard Sieve Mesh #	Size Class	Sample Result (%)	Duplicate Result (%)	RPD	Data Qualifier	QC Limits (% RPD)	
	4.76	No. 4	Gravel	3.08	2.71	12.78		≤ 25	-
	2.00	No. 10	Coarse Sand	6.78	7.12	4.89		≤25	
	0.425	No. 40	Medium Sand	22.49	22.83	1.50		≤ 25	
	0.074	No. 200	Fine Sand	28.37	28.48	0.39		≤ 25	
<0.0	74 - 0.005	Hydrometer	Silt	30.98	31.45	1.51		≤ 25	
	< 0.005	Hydrometer	Clay	8.30	7.41	11.33		≤ 25	
Samples in Ba	itch:	8C8-1 8C8-2 8C8-3	8C8-4 8C8-5 8C8-6	8C8-7 8C8-8 8C8-9	8C8-10 8C8-11 8C8-12	8C8-13 8C8-14 8C8-15			
Qualifiers:		Q - RPD value ou	itside Quality Con	trol Limits					
		I - Insufficient sa	ample material to p	erform Quality (Control Analyses				
Soil Classifica	tion:	Unified Soil Cla Description and SP), or the Liquid When these value Classification of	ssification System Identification of S I Limit, Plastic Lin ues have been de Soils for Engineeri	(USCS) classif oils (Visual-Man nit, and Plasticity etermined the s ng Purposes (Un	fications are estima nual Procedure) un y Index (Atterberg I amples are definit iffied Soil Classific:	ated in accordance less the sample co Limits) have been d tively classified us ation System).	e with ASTM D 2 ntains less than 5% letermined in accor sing ASTM D 24	488, Standard Pra 6 fines (GW, GP, dance with ASTM 87, Standard Pra	actice for SW, and 1 D 4318. actice for

QUALITY CONTROL RESULTS

Client:	Battelle
Project Title:	Searsport Harbor
Project Number:	G606441
Client Sample ID:	HAC-004-1'-2'
AMS Sample ID:	8C8-27

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Analyzed: 5/8/2008 Matrix: Sediment Method: ASTM D 422 Batch: 050808-02G

Pa Diame	article eter Range	U.S. Standard Sieve Mesh #	Size Class	Sample Result	Duplicate Result	RPD	Data Qualifier	QC Limits	
	mm)		~ .	(%)	(%)	(%)		(% RPD)	-
4	4.76	No. 4	Gravel	2.09	2.10	0.48		≤ 25	
-	2.00	No. 10	Coarse Sand	0.52	0.50	3.92		≤ 25	
0	.425	No. 40	Medium Sand	0.61	0.59	3.33		≤ 25	
0	.074	No. 200	Fine Sand	1.47	1.42	3.46		≤ 25	
< 0.07	4 - 0.005	Hydrometer	Silt	45.26	46.29	2.25		≤ 25	
<	0.005	Hydrometer	Clay	50.05	49.10	1.92		≤25	
Samples in Bate	ch:	8C8-16 8C8-17 8C8-18	8C8-19 8C8-20 8C8-21	8C8-22 8C8-23 8C8-24	8C8-25 8C8-26 8C8-27				
Qualifiers:		Q - RPD value outside Quality Control Limits I - Insufficient sample material to perform Quality Control Analyses							
Soil Classificati	on:	Unified Soil Classification System (USCS) classifications are estimated in accordance with ASTM D 2488, Standard Practice f Description and Identification of Soils (Visual-Manual Procedure) unless the sample contains less than 5% fines (GW, GP, SW, an SP), or the Liquid Limit, Plastic Limit, and Plasticity Index (Atterberg Limits) have been determined in accordance with ASTM D 431 When these values have been determined the samples are definitively classified using ASTM D 2487, Standard Practice f						SW, and D 4318. Notice for	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-008 1-2'	Matrix: Sediment
AMS Sample ID:	8C8-1	

			Data				Date	
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed	
Specific Gravity	2.67	none		0.01	0.01	ASTM D 854	5/24/2008	
Liquid Limit	97	none		1	1	ASTM D 4318	5/23/2008	
Plastic Limit	41	none		1	1	ASTM D 4318	5/23/2008	
Plasticity Index	56	none		1	1	ASTM D 4318	5/23/2008	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-008 0-1'	Matrix: Sediment
AMS Sample ID:	8C8-2	

			Data				Date	
Parameter	Result	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed	
Specific Gravity	2.62	none		0.01	0.01	ASTM D 854	5/24/2008	
Liquid Limit	92	none		1	1	ASTM D 4318	5/23/2008	
Plastic Limit	39	none		1	1	ASTM D 4318	5/23/2008	
Plasticity Index	53	none		1	1	ASTM D 4318	5/23/2008	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/2/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-012	Matrix: Sediment
AMS Sample ID:	8C8-3	

			Data				Date	
Parameter	Result	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	<u>Analyzed</u>	
Specific Gravity	2.66	none		0.01	0.01	ASTM D 854	5/24/2008	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/2/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-013	Matrix: Sediment
AMS Sample ID:	8C8-4	

			Data				Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	<u>Analyzed</u>	
Specific Gravity	2.66	none		0.01	0.01	ASTM D 854	5/24/2008	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/2/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-014	Matrix: Sediment
AMS Sample ID:	8C8-5	

			Data				Date	
Parameter A Service	Result	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	<u>Analyzed</u>	
Specific Gravity	2.64	none		0.01	0.01	ASTM D 854	5/24/2008	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/2/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-015	Matrix: Sediment
AMS Sample ID:	8C8-6	

			Data				Date
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.65	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/2/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-016	Matrix: Sediment
AMS Sample ID:	8C8-7	

		Data				Date	
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.68	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Battelle	AMS Project Number: 8C8
G606441	Date Sampled: 5/2/2008
Searsport Harbor	Date Received: 5/7/2008
HAC-017	Matrix: Sediment
8C8-8	
	Battelle G606441 Searsport Harbor HAC-017 8C8-8

			Data				Date
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	<u>Analyzed</u>
Specific Gravity	2.68	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-005 0-1'	Matrix: Sediment
AMS Sample ID:	8C8-9	
	ח	oto Doto

			Data				Date
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.68	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-005 1-2'	Matrix: Sediment
AMS Sample ID:	8C8-10	

			Data				Date	
Parameter 199	Result	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed	
Specific Gravity	2.57	none		0.01	0.01	ASTM D 854	5/24/2008	
Liquid Limit	73	none		1	1	ASTM D 4318	5/23/2008	
Plastic Limit	40	none		1	1	ASTM D 4318	5/23/2008	
Plasticity Index	33	none		1	1	ASTM D 4318	5/23/2008	

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 4/30/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-007 0-1'	Matrix: Sediment
AMS Sample ID:	8C8-11	

			Data				Date
Parameter 199	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.72	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 4/30/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-007 1-2'	Matrix: Sediment
AMS Sample ID:	8C8-12	

			Data				Date
Parameter 199	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.72	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-009 0-1'	Matrix: Sediment
AMS Sample ID:	8C8-13	

			Data				Date
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.67	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-009 1-2'	Matrix: Sediment
AMS Sample ID:	8C8-14	
-		

			Data				Date
Parameter a series and a series of the seri	Result	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.65	none		0.01	0.01	ASTM D 854	5/24/2008
Liquid Limit	94	none		1	1	ASTM D 4318	5/23/2008
Plastic Limit	39	none		1	1	ASTM D 4318	5/23/2008
Plasticity Index	55	none		1	1	ASTM D 4318	5/23/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-010 0-1'	Matrix: Sediment
AMS Sample ID:	8C8-15	

			Data				Date
Parameter A Service	Result	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.63	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

SPECIFIC GRAVITY QUALITY CONTROL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Matrix:	Sediment
Method:	ASTM D 854

AMS Project Number: 8C8 Date Analyzed: 10/26/2007 Batch ID: 052408-01S

Sample Duplicate Results:

-

AMS	Result	Duplicate	Relative %	Data	QC
Sample ID		Result	Difference	Qualifier	Limits
			(%)		
8C8-15	2.63	2.64	0.38		≤ 25 RPD

Samples in Batch (AMS ID):	8C8-1	8C8-4	8C8-7	8C8-10	8C8-13
	8C8-2	8C8-5	8C8-8	8C8-11	8C8-14
	8C8-3	8C8-6	8C8-9	8C8-12	8C8-15

Quality Assurance: These analyses were performed in accordance with EPA guidelines, the 2006 DoD Quality Systems Manual for Environmental Laboratories (Version 3), and the 2003 NELAC Standard, with the following exceptions:

Project-specific Quality Assurance requirements supersede those provided by the above quality systems and documents. Measurements of uncertainty are available upon request.

502 N. Hwy 3, Suite B, League City, TX 77573, (281) 554-7272 Fax (281) 554-6356

QUALITY CONTROL

Data Qualifiers:	U J B Q I	 Undetected at the Limit of Detection (LOD): The associated value is the Limit of Detection, adjusted by any dilution factor used in the analysis. The analyte was positively identified, but was below the Limit of Quantitation (LOQ). The quantitation is an estimate. Blank contamination: The analyte was detected above one-half the LOD in an associated blank. One or more Quality Control criteria failed. Data usability should be carefully assessed by the Project Team. Insufficient sample was provided to perform required Quality Control analyses and/or to meet method-specific sample volume recommendations.
Definitions:	LOD LOQ	The Limit of Detection (LOD) is determined by quantitative establishment of the Method Detection Limit (MDL), as defined in 40 CFR 136(b). The Limit of Quantitation (LOQ) is the minimum level, concentration or quantity of a target variable (target analyte) that can be quantitatively reported with a specified level of confidence. As defined in DoD QSM §D.1.2.2, the LOQ value must be a minimum of 3 times the LOD, although the specified level of confidence may have a lower quantitative value.
Quality Assurance:	These anal Manual fo following e * TOC sar * TOC spi Project-spe systems an	yses were performed in accordance with EPA guidelines, the 2006 DoD Quality Systems r Environmental Laboratories (Version 3), and the 2003 NELAC Standard, with the exceptions: nples not analyzed in quadruplicate ke duplicate not analyzed every 10 samples cific Quality Assurance requirements supersede those provided by the above quality d documents. Measurements of uncertainty are available upon request.

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-010 1-2'
AMS Sample ID:	8C8-16

AMS Project Number: 8C8 Date Sampled: 5/1/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	<u>Method</u>	Analyzed
Specific Gravity	2.69	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-001 0-1'
AMS Sample ID:	8C8-17

AMS Project Number: 8C8 Date Sampled: 5/1/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	<u>Analyzed</u>	
Specific Gravity	2.64	none		0.01	0.01	ASTM D 854	5/24/2008	
Liquid Limit	116	none		1	1	ASTM D 4318	5/23/2008	
Plastic Limit	49	none		1	1	ASTM D 4318	5/23/2008	
Plasticity Index	67	none		1	1	ASTM D 4318	5/23/2008	

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 5/1/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-001 1-2'	Matrix: Sediment
AMS Sample ID:	8C8-18	

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.68	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Battelle
G606441
Searsport Harbor
HAC-003 0-1'
8C8-19

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.65	none		0.01	0.01	ASTM D 854	5/24/2008
Liquid Limit	103	none		1	1	ASTM D 4318	5/23/2008
Plastic Limit	43	none		1	1	ASTM D 4318	5/23/2008
Plasticity Index	60	none		1	1	ASTM D 4318	5/23/2008

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-003 1-2'
AMS Sample ID:	8C8-20

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.67	none		0.01	0.01	ASTM D 854	5/24/2008

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-006 0-1.9'
AMS Sample ID:	8C8-21

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.61	none		0.01	0.01	ASTM D 854	5/24/2008
Liquid Limit	115	none		1	1	ASTM D 4318	5/23/2008
Plastic Limit	45	none		1	1	ASTM D 4318	5/23/2008
Plasticity Index	70	none		1	1	ASTM D 4318	5/23/2008

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G606441	Date Sampled: 4/30/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-006 1.9-3.6'	Matrix: Sediment
AMS Sample ID:	8C8-22	

			Data				Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed	
Specific Gravity	2.67	none		0.01	0.01	ASTM D 854	5/24/2008	

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number: 8C8
Project Number:	G000441	Date Sampled: 4/30/2008
Project Name:	Searsport Harbor	Date Received: 5/7/2008
Client Sample ID:	HAC-006 3.6-7.3'	Matrix: Sediment
AMS Sample ID:	8C8-23	

	Data						Date	
<u>Parameter</u>	Result	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed	
Specific Gravity	2.78	none		0.01	0.01	ASTM D 854	5/24/2008	

Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/7/2008

Matrix: Sediment

ANALYTICAL RESULTS

Client:	Battelle	AMS
Project Number:	G606441	
Project Name:	Searsport Harbor	
Client Sample ID:	HAC-002 0-1'	
AMS Sample ID:	8C8-24	

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed
Specific Gravity	2.64	none		0.01	0.01	ASTM D 854	5/24/2008

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-002 1-2'
AMS Sample ID:	8C8-25

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	<u>Analyzed</u>	
Specific Gravity	2.66	none		0.01	0.01	ASTM D 854	5/24/2008	
Liquid Limit	105	none		1	1	ASTM D 4318	5/23/2008	
Plastic Limit	43	none		1	1	ASTM D 4318	5/23/2008	
Plasticity Index	62	none		1	1	ASTM D 4318	5/23/2008	

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-004 0-1'
AMS Sample ID:	8C8-26

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/7/2008 Matrix: Sediment

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	MDL	LOD	Method	Analyzed
Specific Gravity	2.66	none		0.01	0.01	ASTM D 854	5/24/2008
Liquid Limit	111	none		1	1	ASTM D 4318	5/23/2008
Plastic Limit	46	none		1	1	ASTM D 4318	5/23/2008
Plasticity Index	65	none		1	1	ASTM D 4318	5/23/2008

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

ANALYTICAL RESULTS

bor
<u>,</u>
bo

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 1/0/1900 Matrix: Sediment

			Data				Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>MDL</u>	LOD	Method	Analyzed	
Specific Gravity	2.67	none		0.01	0.01	ASTM D 854	5/24/2008	
Liquid Limit	104	none		1	1	ASTM D 4318	5/23/2008	
Plastic Limit	44	none		1	1	ASTM D 4318	5/23/2008	
Plasticity Index	60	none		1	1	ASTM D 4318	5/23/2008	

SPECIFIC GRAVITY QUALITY CONTROL RESULTS

Battelle
G606441
Searsport Harbor
Sediment
ASTM D 854

AMS Project Number: 8C8 Date Analyzed: 10/26/2007 Batch ID: 052408-02S

Sample Duplicate Results:

AMS Sample ID	Result	Duplicate Result	Relative % Difference	Data Qualifier	QC Limits
_			(%)	-	
8C8-27	2.67	2.68	0.37		≤ 25 RPD

Samples in Batch (AMS ID):	8C8-16	8C8-19	8C8-22	8C8-25
	8C8-17	8C8-20	8C8-23	8C8-26
	8C8-18	8C8-21	8C8-24	8C8-27

Quality Assurance: These analyses were performed in accordance with EPA guidelines, the 2006 DoD Quality Systems Manual for Environmental Laboratories (Version 3), and the 2003 NELAC Standard, with the following exceptions:

Project-specific Quality Assurance requirements supersede those provided by the above quality systems and documents. Measurements of uncertainty are available upon request.

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

QUALITY CONTROL

Client: Project Number: Project Name:	Battelle G606441 Searsport I	AMS Project Number: 8C8 Harbor
Data Qualifiers:	U J B Q I	Undetected at the Limit of Detection (LOD): The associated value is the Limit of Detection, adjusted by any dilution factor used in the analysis. The analyte was positively identified, but was below the Limit of Quantitation (LOQ). The quantitation is an estimate. Blank contamination: The analyte was detected above one-half the LOD in an associated blank. One or more Quality Control criteria failed. Data usability should be carefully assessed by the Project Team. Insufficient sample was provided to perform required Quality Control analyses and/or to meet method-specific sample volume recommendations.
Definitions:	LOD LOQ	The Limit of Detection (LOD) is determined by quantitative establishment of the Method Detection Limit (MDL), as defined in 40 CFR 136(b). The Limit of Quantitation (LOQ) is the minimum level, concentration or quantity of a target variable (target analyte) that can be quantitatively reported with a specified level of confidence. As defined in DoD QSM §D.1.2.2, the LOQ value must be a minimum of 3 times the LOD, although the specified level of confidence may have a lower quantitative value.
Quality Assurance:	These anal Manual fo following e * TOC san * TOC spi Project-spe systems and	yses were performed in accordance with EPA guidelines, the 2006 DoD Quality Systems r Environmental Laboratories (Version 3), and the 2003 NELAC Standard, with the exceptions: nples not analyzed in quadruplicate ke duplicate not analyzed every 10 samples ccific Quality Assurance requirements supersede those provided by the above quality d documents. Measurements of uncertainty are available upon request.

Table II-7: Quality Control Summary for Analyses of Sediment Grain Size and Total Organic Carbon

Quality Control (QC) Element	Acceptance Criteria*	Criteria Met? Yes/No	List Results Outside Criteria (Cross-Reference Results Table in Data Report)	Location of Results (Retained at Lab or in Data Package)
Grain Size: Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD<25%)	Yes	None	In Data Package
Total Organic Carbon: Standard Reference Materials	Within the limits provided by vendor			
Total Organic Carbon: Analytical Replicates	Analyze samples in duplicate (RPD<30%)			

Method Reference Numbers: ASTM D422 (Particle Size Analysis of Soils) and EPA 9060A (Total Organic Carbon)

*The Quality Control Acceptance Criteria are general guidelines. If alternative criteria are used, they must be documented in this table.

This page intentionally left blank

TOC Data

This page intentionally left blank

ANALYTICAL RESULTS

Client:	Battelle	AMS Project Number:	8C8
Project Number:	G606441	Date Sampled:	5/2/2008
Project Name:	Searsport Harbor	Date Received:	5/16/2008
Client Sample ID:	HAC-012	Matrix:	Sediment
AMS Sample ID:	8C8-28		

			Data				Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.67	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.65	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-013
AMS Sample ID:	8C8-29

AMS Project Number: 8C8 Date Sampled: 5/2/2008 Date Received: 5/16/2008 Matrix: Sediment

Data					Date		
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.66	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.70	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-014
AMS Sample ID:	8C8-30

AMS Project Number: 8C8 Date Sampled: 5/2/2008 Date Received: 5/16/2008 Matrix: Sediment

Data							Date
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.67	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.74	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-015
AMS Sample ID:	8C8-31

AMS Project Number: 8C8 Date Sampled: 5/2/2008 Date Received: 5/16/2008 Matrix: Sediment

Data						Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.15	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.16	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-016
AMS Sample ID:	8C8-32

AMS Project Number: 8C8 Date Sampled: 5/2/2008 Date Received: 5/16/2008 Matrix: Sediment

Data						Date	
<u>Parameter</u>	Result	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.16	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.13	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-017
AMS Sample ID:	8C8-33

AMS Project Number: 8C8 Date Sampled: 5/2/2008 Date Received: 5/16/2008 Matrix: Sediment

			Data				Date
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.12	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.15	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-019
AMS Sample ID:	8C8-34

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/16/2008 Matrix: Sediment

			Data				Date
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed
Total Organic Carbon	2.41	%		0.01	0.03	EPA 9060A	5/22/2008
Total Organic Carbon	2.48	%		0.01	0.03	EPA 9060A	5/22/2008

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-020
AMS Sample ID:	8C8-35

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/16/2008 Matrix: Sediment

Data							Date	
Parameter	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	Analyzed	
Total Organic Carbon	2.53	%		0.01	0.03	EPA 9060A	5/22/2008	
Total Organic Carbon	2.54	%		0.01	0.03	EPA 9060A	5/22/2008	

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-021
AMS Sample ID:	8C8-36

AMS Project Number: 8C8 Date Sampled: 4/30/2008 Date Received: 5/16/2008 Matrix: Sediment

Data							Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	LOD	LOQ	Method	<u>Analyzed</u>	
Total Organic Carbon	1.58	%		0.01	0.03	EPA 9060A	5/22/2008	
Total Organic Carbon	1.59	%		0.01	0.03	EPA 9060A	5/22/2008	

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

ANALYTICAL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Client Sample ID:	HAC-022
AMS Sample ID:	8C8-37

AMS Project Number: 8C8 Date Sampled: 5/1/2008 Date Received: 5/16/2008 Matrix: Sediment

Data							Date	
<u>Parameter</u>	<u>Result</u>	<u>Unit</u>	<u>Qualifier</u>	<u>LOD</u>	LOQ	Method	Analyzed	
Total Organic Carbon	0.97	%		0.01	0.03	EPA 9060A	5/22/2008	
Total Organic Carbon	1.00	%		0.01	0.03	EPA 9060A	5/22/2008	

- * TOC sample not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

Applied Marine Sciences, Inc.

502 N. Highway 3, Suite B • League City, TX 77573 • (281) 554-7272 • Fax (281) 554-6356

TOC QUALITY CONTROL RESULTS

Client:	Battelle
Project Number:	G606441
Project Name:	Searsport Harbor
Matrix:	Sediment
Method:	EPA 9060A

AMS Project Number: 8C8 Date Analyzed: 5/22/2008 Batch ID: 052208-01

Method Blank (Batch Continuing Blank (CB)), Continuing Calibration Verification (CCV) and Independent Continuing Calibration Verification (ICCV) Results:

AMS	Result	CCV	Relative %	Data	LOD	LOQ	QC
Sample ID		Conc.	Difference	Qualifier			Limits
	(%)	(%)	(%)		(%)	(%)	(%)
CB-01	0.01	0.01		U	0.01	0.03	≤ 0.03
CCV-01	3.14	3.23	2.83		0.01	0.03	\leq 5 RPD
ICCV-01	2.10	2.00	4.88		0.01	0.03	\leq 5 RPD

Sample Duplicate Results:

AMS	Result	Duplicate	Relative %	Data	LOD	LOQ	QC
Sample ID		Result	Difference	Qualifier			Limits
 	(%)	(%)	(%)		(%)	(%)	
8C8-37	0.97	1.00	3.05		0.01	0.03	\leq 25 RPD

Samples in Batch (AMS ID):	8C8-28	8C8-31	8C8-34	8C8-37
	8C8-29	8C8-32	8C8-35	
	8C8-30	8C8-33	8C8-36	

Quality Assurance: These analyses were performed in accordance with EPA guidelines, the 2006 DoD Quality Systems Manual for Environmental Laboratories (Version 3), and the 2003 NELAC Standard, with the following exceptions:

- * TOC samples not analyzed in quadruplicate
- * TOC spike duplicate not analyzed every 10 samples

Project-specific Quality Assurance requirements supersede those provided by the above quality systems and documents. Measurements of uncertainty are available upon request.

QUALITY CONTROL

Client: Project Number: Project Name:	Battelle G606441 Searsport I	AMS Project Number: 8C8 Harbor
Data Qualifiers:	U J Q I	Undetected at the Limit of Detection (LOD): The associated value is the Limit of Detection, adjusted by any dilution factor used in the analysis. The analyte was positively identified, but was below the Limit of Quantitation (LOQ). The quantitation is an estimate. Blank contamination: The analyte was detected above one-half the LOD in an associated blank. One or more Quality Control criteria failed. Data usability should be carefully assessed by the Project Team. Insufficient sample was provided to perform required Quality Control analyses and/or to meet method-specific sample volume recommendations.
Definitions:	LOD LOQ	The Limit of Detection (LOD) is determined by quantitative establishment of the Method Detection Limit (MDL), as defined in 40 CFR 136(b). The Limit of Quantitation (LOQ) is the minimum level, concentration or quantity of a target variable (target analyte) that can be quantitatively reported with a specified level of confidence. As defined in DoD QSM §D.1.2.2, the LOQ value must be a minimum of 3 times the LOD, although the specified level of confidence may have a lower quantitative value.
Quality Assurance:	These analy Manual for following es * TOC sam * TOC spik Project-spec systems and	Asses were performed in accordance with EPA guidelines, the 2006 DoD Quality Systems Environmental Laboratories (Version 3), and the 2003 NELAC Standard, with the exceptions: The ples not analyzed in quadruplicate the duplicate not analyzed every 10 samples wific Quality Assurance requirements supersede those provided by the above quality documents. Measurements of uncertainty are qualityle upon request.

PCB and Pesticide Data

This page intentionally left blank

Pesticide/PCB – Sediment QA/QC Summary Batch 08-0130

PROJECT	USACE/NED - Searsport Sediment Analysis
I KUJEC I.	OSACL/NLD – Searsport Seament Anarysis
PARAMETER:	Pesticide/PCB
LABORATORY:	Battelle, Duxbury, MA
MATRIX:	Sediment
SAMPLE CUSTODY:	Sediment cores for this project were composited on 4/30/2008, 4/1/2008, and 5/2/2008.
	The composites were hand delivered to the Chemistry Sample Custodian on 5/15/2008.
	The samples were received in good condition and no custody issues were noted.
	Samples were logged into Battelle LIMS and received unique IDs. Composite sediment
	samples were stored in the walk-in freezer until sample preparation could begin.

	Reference Method	Method Blank	Surrogate Recovery	LCS Recovery	MS Recovery	SRM Percent Difference	Sample Replicate Relative Percent Difference	Detection Limits (ug/kg dry wt)
Pesticide /PCB	General NS&T	<5xMDL	30-150% Recovery	50-120% Recovery	50-120% Recovery	Average $PD \leq 30\%$	≤30% RPD	MDL: 0.06 – 3.67 RL:
					(analyte conc. in MS must be $>5x$ background)	(pius variance) (for analytes > 5x MDL)	to be used for data quality assessment)	0.36 – 28.75

METHOD: Sediment samples were extracted for PCB and pesticides following general NS&T methods. Approximately 30 g of sediment was spiked with surrogates and extracted three times with dichloromethane using shaker table techniques. The combined extract was dried over anhydrous sodium sulfate, concentrated, processed through activated copper, alumina cleanup column, concentrated, and further purified by GPC/HPLC. The post-HPLC extract was concentrated, fortified with internal standards (IS) and split for the required analyses. Extracts intended for PCB/Pest analysis were solvent exchanged into hexane and then analyzed using gas chromatography/electron capture detector (GC/ECD), following general NS&T methods. Sample data were quantified by the method of internal standards, using the spiked IS compounds.

HOLDINGFrozen sediment samples were prepared for analysis in one analytical batch and wereTIMES:extracted within 1 year of sample collection. All extracts were analyzed within 40 days
of extraction.

Batch	Extraction Date	Analysis Date
08-0130	5/27/2008	6/2/2008 - 6/4/2008

Pesticide/PCB – Sediment QA/QC Summary Batch 08-0130

BLANK:	A procedural blank (PB) was prepared with the analytical batch. The PB was analyzed to ensure the sample extraction and analysis methods were free of contamination.
	08-0130 – No target analytes were detected in the procedural blank.
	Comments – None.
LABORATORY CONTROL SAMPLE:	A laboratory control sample (LCS) was prepared with the analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.
SAMI LE.	08-0130 – All percent recoveries of spiked target analytes were within the laboratory control limit (50-120%).
	Comments – None.
MATRIX SPIKE/MATRIX SPIKE DUPLICATE:	A pair of matrix spike (MS) and matrix spike duplicate samples (MSD) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy. The RPD between percent recoveries was calculated to measure the data quality in terms of precision.
	08-0130 – All percent recoveries of spiked target analytes were within the laboratory control limit (50-120%). All RPDs were within the laboratory control limits (< 30%).
	Comments – None.
REPLICATES:	Duplicate analysis was performed with each analytical batch. RPDs between duplicate analyses were calculated to measure data quality in terms of precision.
	08-0130 – The RPDs between duplicate analyses of all target analytes were within the laboratory control limits (<30% RPD).
	Comments – None.
SRM:	A standard reference material (NIST SRM 1944) was prepared with the analytical batch. The percent difference (PD) between the measured value and the certified range was calculated to measure data quality in terms of accuracy.
	08-0130 - 1 out of 25 exceedences noted.
	Comments – All percent differences were within the laboratory control limits (<30 % difference plus variance) except for PCB 209. The chromatography and calculations were reviewed. The analyst noted that interference from the matrix was the cause for the elevated PCB 209 result. The concentration has been qualified with an "ME" to indicate that the result is an estimate. The percent difference exceedence was qualified with an "N". No corrective action was taken. PCB 209 was not detected in any field samples, and therefore the SRM exceedences due to over-recovery had no impact on the data quality. Accuracy for PCB 209 was demonstrated in all other quality controls.

Pesticide/PCB – Sediment QA/QC Summary Batch 08-0130

SURROGATES: Two surrogate compounds were added prior to extraction, including PCB 34 and PCB 152. The recovery of each surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency).

08-0130 – All surrogate percent recoveries for this batch were within the laboratory control limits (30-150%)

Comments – None.

CALIBRATIONS: The GC/ECD was calibrated with a 6 level curve, with a correlation coefficient of >0.995. Each batch of samples analyzed is bracketed by continuing calibration verification (CCV) sample, run at a frequency of minimally every 24 hours. The PD between the initial calibration (ICAL) and the continuing calibration samples should be <20% for each compound. Additionally an Independent Calibration Check (ICC) sample is run immediately following the ICAL. The ICC is to have a percent difference < 20%.

08-0130 – No exceedences noted.

Comments – All calibration criteria have been met.

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-012	HAC-013	HAC-014	HAC-015	HAC-016
Battelle ID	Q2888-P	Q2889-P	Q2890-P	Q2891-P	Q2892-P
Sample Type	SA	SA	SA	SA	SA
Collection Date	05/02/08	05/02/08	05/02/08	05/02/08	05/02/08
Extraction Date	05/27/08	05/27/08	05/27/08	05/27/08	05/27/08
Analysis Date	06/03/08	06/03/08	06/03/08	06/03/08	06/03/08
Analysis Date	00/03/08 ECD	00/03/08	00/03/08	00/03/08	00/03/08
	ECD 50.19	ECD	ECD	ECD	ECD
	59.16	50.14	59.01	59.65	59.34
% Lipiu					
	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
Sample Size	12.27	12.70	12.59	12.31	12.50
Size Unit-Basis	G_DRY	G_DRY	G_DRY	G_DRY	G_DRY
Units	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY
4 4'-000	0.56	0.63	0.6	0.25 .1	0.32.1
4 4'-DDE	0.3.1	0.35	0.31 .1	0.19.1	0.24
4 4'-DDT	0.45	0.52	0.56	0.36	0.38 1
aldrin	1 73	0.39 11	0.50	0.41	0.00 0
a chlordano	0.41 11	0.39 U	0.4 U	0.41 U	0.4 U
a chlordano	0.41 U	0.39 0	0.4 0	0.41 U	0.4 0
y-chiordane	0.41 U	0.4 0	0.4 0	0.41 U	0.4 0
	0.41 U	0.39 U	0.4 0	0.41 0	0.4 0
	0.41 U	0.39 U	0.4 U	U.41 U	0.4 U
trans-nonachior	0.41 U	0.39 0	0.4 0	0.41 0	0.4 0
oxychlordane	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
dieldrin	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
endosulfan I	0.41 U	0.39 0	0.4 U	0.41 U	0.4 0
endosultan II	0.31 J	0.32 J	0.39 J	0.2 J	0.2 J
endrin	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
heptachlor	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
heptachlor epoxide	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Hexachlorobenzene	0.41 U	0.39 U	0.2 J	0.13 J	0.1 J
methoxychlor	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
loxaphene	32.67 U	31.55 U	31.83 U	32.02 U	32.6 U
CI2(8)	0.41 U	0.39 U	0.4 U	0.4 U	0.4 U
Cl3(18)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Cl3(28)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Cl4(44)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Cl4(49)	0.41 U	0.4 U	0.4 U	0.41 U	0.4 U
Cl4(52)	0.41 U	0.4 U	0.4 U	0.41 U	0.4 U
Cl4(66)	0.41 U	0.4 U	0.4 U	0.41 U	0.4 U
CI5(87)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
CI5(101)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
CI5(105)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
CI5(118)	0.41 U	0.34 J	0.36 J	0.41 U	0.4 U
Cl6(128)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Cl6(138)	0.35 J	0.41	0.32 J	0.2 J	0.25 J
Cl6(153)	0.28 J	0.39	0.29 J	0.2 J	0.2 J
CI7(170)	0.41 U	0.39 U	0.4 U	0.4 U	0.4 U
CI7(180)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
CI7(183)	0.4 U	0.39 U	0.39 U	0.4 U	0.4 U
CI7(184)	0.4 U	0.39 U	0.39 U	0.4 U	0.4 U
CI7(187)	0.41 U	0.39 U	0.4 U	0.4 U	0.4 U
Cl8(195)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Cl9(206)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
CI10(209)	0.41 U	0.39 U	0.4 U	0.41 U	0.4 U
Total PCB	14.38	14.02	13.94	13.86	13.7
Surrogata Recoveries (%)					
Surroyale Recoveries (%)					
Cl3(34)	56	55	62	54	58
Cl6(152)	68	69	74	66	70

U = analyte not-detected; ss-RL reported

J = analyte detected below RL N = outside QC limits

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-017	HAC-019	HAC-020	HAC-021	HAC-022
Battelle ID	Q2893-P	Q2894-P	Q2895-P	Q2896-P	Q2897-P
Sample Type	SA	SA	SA	SA	SA
Collection Date	05/02/08	04/30/08	04/30/08	04/30/08	05/01/08
Extraction Date	05/27/08	05/27/08	05/27/08	05/27/08	05/27/08
Analysis Date	06/04/08	06/04/08	06/04/08	06/04/08	06/04/08
Analysis Date	00/04/00 FCD	00/0 1 /08	00/0 1 /08	50004/08	50004/08
	ECD	ECD 54 71	EGD	ECD 41.52	20.44
	57.72	54.71	50.47	41.55	29.44
% Lipiu					
	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
	12.00	13.90	13.12	17.01	21.50
Size Unit-Basis					
Units	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY
4 4'-חחח-'4	0.32	0.29 1	031	0.12	0.21 1
4,4-DDE	0.32 3	0.29 3	0.3 3	0.12.5	0.21 5
	0.24 5	0.12.5	0.15 5	0.20 0	0.23 0
	0.35 5	0.30 0	0.3 5	0.28 0	0.23 0
	0.39 0	0.36 0	0.36 0	0.28 0	0.23 0
a-chiordana	0.39 U	0.30 U	0.38 U	0.28 U	0.23 U
g-chiordane	0.39 U	0.36 U	0.38 U	0.28 0	0.23 0
Lindane	0.39 U	0.36 U	0.38 U	0.28 0	0.23 0
cis-nonachior	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
trans-nonachlor	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
oxychlordane	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
dieldrin	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
endosulfan I	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
endosulfan II	0.21 J	0.36 U	0.22 J	0.28 U	0.23
endrin	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
heptachlor	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
heptachlor epoxide	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Hexachlorobenzene	0.13 J	0.36 U	0.12 J	0.28 U	0.23 U
methoxychlor	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Toxaphene	31.17 U	28.71 U	30.55 U	22.76 U	18.64 U
Cl2(8)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Cl3(18)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Cl3(28)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Cl4(44)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Cl4(49)	0.39 U	0.36 U	0.38 U	0.29 U	0.23 U
Cl4(52)	0.39 U	0.36 U	0.38 U	0.29 U	0.23 U
Cl4(66)	0.39 U	0.36 U	0.38 U	0.29 U	0.23 U
CI5(87)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI5(101)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI5(105)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI5(118)	0.22 J	0.36 U	0.23 J	0.28 U	0.24 U
Cl6(128)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
Cl6(138)	0.2 J	0.36 U	0.21 J	0.28 U	0.24 U
CI6(153)	0.19 J	0.18 J	0.26 J	0.28 U	0.13 J
CI7(170)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI7(180)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI7(183)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI7(184)	0.39 U	0.36 U	0.38 U	0.28 U	0.23 U
CI7(187)	0.39 []	0.36 U	0.38 []	0.28 11	0.23 []
Cl8(195)	0.39 []	0.36 U	0.38 []	0.28 11	0.23 U
CI9(206)	0.39 []	0.36 U	0.38 U	0.28 U	0.23 11
CI10(209)	0.00 0	0.36 U	0.38 11	0.28 11	0.20 0
Total PCB	12 02	12 6	12 8	0.20 0	0.23 U Q 12
	12.32	12.0	12.0	10.12	0.12
Surrogate Recoveries (%)					
(12/24)	61	<u>e</u> e	EE	50	66
	01	60	55	59	00
CIO(152)	/4	12	60	63	13

U = analyte not-detected; ss-RL I

J = analyte detected below RL N = outside QC limits

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	Procedural Blank	
Battelle ID	BL 833PB-P	
Sample Type	PB	
Collection Date	05/27/08	
Extraction Date	05/27/08	
Analysia Date	05/27/08	
Analysis Date	00/02/08	
Analytical Instrument	ECD	
% Moisture	53.62	
% Lipia	NA	
Matrix	SEDIMENT	
Sample Size	13.94	
Size Unit-Basis	G_DRY	
Units	UG/KG_DRY	
4,4'-DDD	0.36 U	
4,4'-DDE	0.36 U	
4.4'-DDT	0.36 U	
aldrin	0.36 U	
a-chlordane	0.00 0	
a-chlordane	0.00 0	
Lindane	0.00 0	
cis-nonachlor	0.00 0	
trans-nonachior		
	0.30 0	
oxychiordane	0.36 U	
	0.36 U	
	0.36 0	
endosultan II	0.36 U	
enarin	0.36 U	
heptachlor	0.36 U	
heptachlor epoxide	0.36 U	
Hexachlorobenzene	0.36 U	
methoxychlor	0.36 U	
Toxaphene	28.75 U	
Cl2(8)	0.36 U	
Cl3(18)	0.36 U	
Cl3(28)	0.36 U	
Cl4(44)	0.36 U	
Cl4(49)	0.36 U	
Cl4(52)	0.36 U	
Cl4(66)	0.36 U	
CI5(87)	0.36 U	
CI5(101)	0.36 U	
CI5(105)	0.36 U	
CI5(118)	0.36 U	
Cl6(128)	0.36 U	
Cl6(138)	0.36 U	
Cl6(153)	0.36 U	
CI7(170)	0.36 U	
CI7(180)	0.36 U	
CI7(183)	0.36 U	
CI7(184)	0.36 U	
CI7(187)	0.36 U	
CI8(195)	0.00 0	
CI9(206)	0.00 0	
CI10(200)		
	U.36 U	
I UIAI FUD	12.90	

Surrogate Recoveries (%)

Cl3(34)		
Cl6(152)		

U = analyte not-detected; ss-RL reported

J = analyte detected below RL N = outside QC limits

71 76

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

	080324-01: Sand,					
Client ID	White Quartz					
Battelle ID	BI 834I CS-P					
Sample Type	LCS					
Collection Date	05/27/08					
Extraction Date	05/27/08					
Analysis Date	06/03/08					
Analytical Instrument	ECD					
% Moisture	NA					
% Lipid	NA					
Matrix	SEDIMENT					
Sample Size	30.27					
Size Unit-Basis	G_DRY					
Units	UG/KG_DRY		Target %	Recovery	Qualifier	
	2.40		2.07	00		
	3.49		3.97	88		
4,4-DDE	3.33		3.97	84		
	3.30		3.97	90		
aidrin	3.02		3.97	70		
a-chlordane	3.25		3.97	82		
Lindane	2.20		3.97	71		
cis-nonachlor	2.00		3.97	84		
trans-nonachlor	33		3.97	83		
oxychlordane	3 25		3.98	82		
dieldrin	3.51		3.97	88		
endosulfan l	3.36		3.97	85		
endosulfan II	3.03		3.97	76		
endrin	3.3		3.97	83		
heptachlor	2.98		3.97	75		
heptachlor epoxide	3.32		3.97	84		
Hexachlorobenzene	2.58		3.97	65		
methoxychlor	3.93		3.97	99		
Toxaphene	13.24	U				
Cl2(8)	2.39		3.98	60		
Cl3(18)	2.83		3.98	71		
Cl3(28)	2.48		3.97	62		
Cl4(44)	3.1		3.97	78		
Cl4(49)	3.2		3.98	80		
Cl4(52)	3.1		3.96	78		
Cl4(66)	3.13		3.97	79		
CI5(87)	3.35		3.93	85		
	3.14		3.97	79		
CI5(105)	3.4		3.97	00		
CI5(116) CI6(128)	3.42		3.97	00 85		
CI6(138)	3 35		3.07	84		
CI6(153)	3.22		3.97	81		
CI7(170)	3.62		3.98	91		
CI7(180)	3.52		3.98	88		
Cl7(183)	3.57		3.98	90		
CI7(184)	3.31		3.98	83		
CI7(187)	3.31		3.98	83		
Cl8(195)	3.41		3.98	86		
Cl9(206)	3.35		3.98	84		
CI10(209)	3.2		3.97	81		
Total PCB	114.7					

Surrogate Recoveries (%)

Cl3(34) Cl6(152)

74 78

U = analyte not-detected; ss-RL reported J = analyte detected below RL

N = outside QC limits

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

	080328-01 [.] Nist SRM					
Client ID	1944					
Battelle ID	BL835SRM-P					
Sample Type	SRM					
Collection Date	05/27/08					
Extraction Date	05/27/08					
Analysis Date	06/03/08					
Analytical Instrument	ECD					
% Moisture	1.3					
% Lipid	NA					
Matrix	SEDIMENT					
Sample Size	2.05					
Size Unit-Basis	G_DRY	Certified		Passing	Actual	
Units	UG/KG_DRY	Value	+/-	%Difference	%Difference	Qualifier
4,4'-DDD	2.43 U					
4,4'-DDE	69					
4,4'-DDT	120.6	119	11.00	39.24	1.3	
aldrin	2.44 U					
a-chlordane	18.12	16.51	0.83	35.03	9.8	
g-chlordane	17.35					
Lindane	5.23					
cis-nonachlor	4.36					
trans-nonachlor	9.68	8.2	0.51	36.22	18	
oxychlordane	2.44 U					
dieldrin	59.26					
endosulfan I	2.44 U					
endosulfan II	2.44 U					
endrin	2.44 U					
heptachlor	2.44 U					
heptachlor epoxide	2.44 U					
Hexachlorobenzene	6.47	6.03	0.35	35.8	7.3	
methoxychlor	2.44 U					
Toxaphene	195.51 U					
Cl2(8)	29.12	22.3	2.30	40.31	30.6	
Cl3(18)	57.15	51	2.60	35.1	12.1	
Cl3(28)	57 64	80.8	2 70	33 34	28.7	
Cl4(44)	43.66	60.2	2 00	33.32	27.5	
Cl4(49)	50.84	53	1 70	33.21	4 1	
Cl4(52)	70.94	79.4	2.00	32.52	10.7	
Cl4(66)	61 24	71.9	4.30	35.98	14.8	
CI5(87)	32.1	29.9	4 30	44 38	7.4	
CI5(101)	80.92	73.4	2 50	33.41	10.2	
CI5(101)	22.65	24.5	1 10	34.40	7.6	
CI5(118)	60.71	24.5	1.10	27 /1	20.2	
	0.02	9 47	4.30	22.21	20.2	
	9.02	62.4	2.00	24.92	0.0	
	00.10	02.1	3.00	34.03	3.1	
	70.03 29.96 ME	74 22.6	2.90	35.92	3.0	
	20.00 ME	22.0	1.40	30.19	21.1	
	33.26	44.3	1.20	32.71	24.9	
	9.3	12.19	0.57	34.08	23.7	
CI7(184)	2.42 U	05.4	4 00	00.00	40.0	
	20.28	25.1	1.00	33.98	19.2	
CI8(195)	4.61	3.75	0.39	40.4	22.9	
Cl9(206)	9.2	9.21	0.51	35.54	0.1	
CI10(209)	10.44 ME	6.81	0.33	34.85	53.3	Ν
Total PCB	1491.02					

48 73

Surrogate Recoveries (%)

Cl3(34)		
Cl6(152)		

U = analyte not-detected; ss-RL reported J = analyte detected below RL

N = outside QC limits

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-013	HAC-013			
Battelle ID	Q2889-P	Q2889MS-P			
Sample Type	SA	MS			
Collection Date	05/02/08	5/2/2008			
Extraction Date	05/27/08	5/27/2008			
Analysis Date	06/03/08	6/3/2008			
Analytical Instrument	ECD	ECD			
% Moisture	58.14	57.98			
% Lipid	NA	NA			
Matrix	SEDIMENT	SEDIMENT			
Sample Size	12.70	6.3			
Size Unit-Basis	G_DRY	G_DRY			
Units	UG/KG_DRY	UG/KG_DRY	Target % R	ecovery	Qualifier
4.4'-DDD	0.63	17.39	19.06	88	
4.4'-DDE	0.35 J	15.79	19.06	81	
4.4'-DDT	0.52	17.49	19.06	89	
aldrin	0.39 U	13.87	19.06	73	
a-chlordane	0.39 U	15.87	19.06	83	
g-chlordane	0.4 U	16.58	19.08	87	
Lindane	0.39 U	12.99	19.06	68	
cis-nonachlor	0.39 U	15.33	19.06	80	
trans-nonachlor	0.39 U	15.95	19.07	84	
oxychlordane	0.39 U	15.84	19.15	83	
dieldrin	0.39 U	16.33	19.06	86	
endosulfan I	0.39 U	14.04	19.06	74	
endosulfan II	0.32 J	15.36	19.06	79	
endrin	0.39 U	15.37	19.06	81	
heptachlor	0.39 U	14.34	19.06	75	
heptachlor epoxide	0.39 U	15.89	19.06	83	
Hexachlorobenzene	0.39 U	11.8	19.08	62	
methoxychlor	0.39 U	20	19.05	105	
Toxaphene	31.55 U	63.62 U			
Cl2(8)	0.39 U	11	19.10	58	
Cl3(18)	0.39 U	12.35	19.10	65	
Cl3(28)	0.39 U	11.37	19.07	60	
Cl4(44)	0.39 U	14.56	19.09	76	
Cl4(49)	0.4 U	15.54	19.12	81	
Cl4(52)	0.4 U	14.8	19.05	78	
Cl4(66)	0.4 U	15.92	19.07	83	
	0.39 U	15.17	18.88	80	
CI5(101)	0.39 U	15.17	19.09	79	
CI5(105)	0.39 U	15.68	19.07	82	
	0.34 J	10.4	19.07	84	
	0.39 0	15.50	19.16	01	
	0.41	15.95	19.09	01	
CID(155)	0.39	15.71	19.07	00 114	
	0.39 U	21.70	19.14	07	
CI7(183)	0.39 U	10:55	19.12	96	
CI7(184)	0.39 0	10.41	10.12	82	
CI7(187)	0.39 0	15.75	10.12	02 QA	
CI8(195)	0.39 11	15.02	19.10	81	
Cl9(206)	0.39 U	14 4	19.10	75	
CI10(209)	0.39 11	14 62	19.10	77	
Total PCB	14 02	545 1	10.07		
	11.02	010.1			

Surrogate Recoveries (%)

Cl3(34)	55	72
Cl6(152)	69	76

U = analyte not-detected; ss-RL reported

J = analyte detected below RL N = outside QC limits

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-013				
Battelle ID	Q2889MSD-P				
Sample Type	MSD				
Collection Date	5/2/2008				
Extraction Date	5/27/2008				
Analysis Date	6/2/2000				
Analysis Date	0/3/2008				
Analytical Instrument	ECD				
% Moisture	58.07				
% Lipid	NA				
Matrix	SEDIMENT				
Sample Size	6.61				
Size Unit-Basis	G_DRY				
Units	UG/KG_DRY	Target % Recov	very Qualifier	RPD (%)	Qualifier
4.4'-000	15 35	18 16	<u>81</u>	83	
4,4'DDE	10.00	10.10	76	6.4	
4,4-DDE	14.14	10.17	70	0.4	
4,4-DDT	10.23	18.10	87	2.3	
aldrin	11.65	18.16	64	13.1	
a-chlordane	14.06	18.17	77	7.5	
g-chlordane	14.57	18.18	80	8.4	
Lindane	10.74	18.17	59	14.2	
cis-nonachlor	13.89	18.17	76	5.1	
trans-nonachlor	14.17	18.18	78	7.4	
oxychlordane	13.55	18.25	74	11.5	
dieldrin	14.29	18.16	79	8.5	
endosulfan l	12.53	18.17	69	7.0	
endosulfan II	13.18	18 17	71	10.7	
endrin	13.67	18 16	75	77	
bostachlor	11.07	10.10	65	14.2	
heptachlor anavida	12.65	10.10	75	14.5	
	10.00	10.17	75	10.1	
	10.49	10.10	00	0.7	
metnoxycnior	17.36	18.16	96	9.0	
loxaphene	60.64 U				
Cl2(8)	9.18	18.21	50	14.8	
Cl3(18)	10.21	18.21	56	14.9	
Cl3(28)	9.57	18.17	53	12.4	
Cl4(44)	13.13	18.19	72	5.4	
Cl4(49)	13.55	18.23	74	9.0	
Cl4(52)	12.61	18.15	69	12.2	
Cl4(66)	13.95	18.17	77	7.5	
CI5(87)	13.75	18.00	76	5.1	
CI5(101)	13.69	18.19	75	5.2	
CI5(105)	13.8	18.17	76	7.6	
Cl5(118)	14.5	18 17	78	74	
Cl6(128)	14 36	18.26	79	2.5	
Cl6(138)	15.1	18 19	81	0.0	
CI6(153)	12.04	10.13	75	6.5	
CIZ(170)	10.94	10.17	102	10.0	
	10.00	10.20	79	10.1	
	14.20	18.23	78	10.9	
	15.01	18.23	82	4.8	
CI/(184)	14.03	18.23	11	6.3	
CI7(187)	13.48	18.21	74	7.8	
Cl8(195)	13.53	18.21	74	9.0	
Cl9(206)	12.63	18.21	69	8.3	
CI10(209)	13.3	18.17	73	5.3	
Total PCB	480.18				

62

70

Surrogate Recoveries (%)

Cl3(34) Cl6(152)

U = analyte not-detected; ss-RL reported J = analyte detected below RL N = outside QC limits

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-014	HAC-014			
Battelle ID	Q2890-P	Q2890DUP-P			
Sample Type	SA	QADU			
Collection Date	05/02/08	5/2/2008			
Extraction Date	05/27/08	5/27/2008			
Analysis Date	06/03/08	6/3/2008			
	FCD	FCD			
% Moisture	59.81	50 50			
% Linid	59.01	55.55 NA			
Matrix	SEDIMENT	SEDIMENT			
Sample Size	12 59	12 28			
Size Init Basis	G DPV				
Units				RPD	Qualifier
onito	CONC_DIC	00/100_0101			Qualifier
4.4'-DDD	0.6	0.48		22.2	
4,4'-DDE	0.31 J	0.31	J	NA	
4.4'-DDT	0.56	0.48		15.4	
aldrin	0.4 U	0.41	U	NA	
a-chlordane	0.4 U	0.41	U	NA	
g-chlordane	0.4 U	0.41	Ŭ	NA	
Lindane	0.4 U	0.41	U	NA	
cis-nonachlor	0.4 U	0.41	U	NA	
trans-nonachlor	0.4 U	0.41	U	NA	
oxychlordane	0.4 U	0.41	U	NA	
dieldrin	0.4 U	0.41	U	NA	
endosulfan l	0.4 U	0.41	U	NA	
endosulfan II	0.39 J	0.32	J	NA	
endrin	0.4 U	0.41	U	NA	
heptachlor	0.4 U	0.41	U	NA	
heptachlor epoxide	0.4 U	0.41	U	NA	
Hexachlorobenzene	0.2 J	0.16	J	NA	
methoxychlor	0.4 U	0.41	U	NA	
Toxaphene	31.83 U	32.63	U	NA	
CI2(8)	0.4 U	0.41	U	NA	
Cl3(18)	0.4 U	0.41	U	NA	
Cl3(28)	0.4 U	0.41	U	NA	
Cl4(44)	0.4 U	0.41	U	NA	
Cl4(49)	0.4 U	0.41	U	NA	
Cl4(52)	0.4 U	0.41	U	NA	
Cl4(66)	0.4 U	0.41	U	NA	
CI5(87)	0.4 U	0.41	U	NA	
CI5(101)	0.4 U	0.41	U	NA	
CI5(105)	0.4 U	0.41	U	NA	
Cl5(118)	0.36 J	0.41	U	NA	
Cl6(128)	0.4 U	0.41	U	NA	
Cl6(138)	0.32 J	0.28	J	NA	
Cl6(153)	0.29 J	0.3	J	NA	
CI7(170)	0.4 U	0.41	U	NA	
CI7(180)	0.4 U	0.41	U	NA	
CI7(183)	0.39 U	0.4	U	NA	
CI7(184)	0.39 U	0.4	U	NA	
CI7(187)	0.4 U	0.41	U	NA	
Cl8(195)	0.4 U	0.41	U	NA	
Cl9(206)	0.4 U	0.41	U	NA	
CI10(209)	0.4 U	0.41	U	NA	
Total PCB	13.94	14.28			

Surrogate Recoveries (%)

Cl3(34)	62	57
Cl6(152)	74	68

U = analyte not-detected; ss-RL reported

J = analyte detected below RL N = outside QC limits

Pesticide/PCB – Rinsate Blank QA/QC Summary Batch 08-0120

PROJECT:	USACE – New England District; Searsport Rinsate Blank
PARAMETER:	Pesticide/PCB
LABORATORY:	Battelle, Duxbury, MA
MATRIX:	Rinsate Blank
SAMPLE CUSTODY:	Two Rinsate blank samples, one from a vibracore and the other from sediment grab, were collected on $5/1/2008$ and $5/2/2008$, respectively. They were delivered to the Chemistry Sample Custodian on $5/6/2008$. Upon arrival the cooler temperature was recorded at 4.0°C. The samples were received in good condition and no custody issues were noted. They were logged into Battelle LIMS to receive unique IDs. The rinsate blanks were stored in refrigerator at 4°C until sample preparation could begin. However, during storage one sample Q2812 (sediment grab rinsate) broke. The entire sample was lost.

	Reference Method	Method Blank	Surrogate Recovery	LCS Recovery	Detection Limits (ng/L)
PCB/Pest	General	<5xMDL	30-150%	50-120%	MDL:
	NS&T		Recovery	Recovery	0.35 – 0.94
					RL:
					1.25
					Toxaphene:
					100.2

METHOD:

The rinsate blank sample was analyzed to ensure field collection methods were free of contamination. Approximately 1 L of water was spiked with surrogates and extracted three times with dichloromethane using separatory funnel techniques. The extracts were then concentrated, fortified with internal standard (IS) and split for the required analysis. The split extract for PCB/pesticide analysis was solvent exchanged into hexane, and analyzed using gas chromatography/electron capture detection (GC/ECD), following general NS&T methods. Sample data were quantified by the method of internal standards, using the spiked IS compounds.

HOLDING TIMES: The rinsate blank sample was extracted within 7 days of sample collection and analyzed within 40 days of extraction.

Batch	Extraction Date	Analysis Date
08-0120	5/8/2008	6/16/2008

Pesticide/PCB – Rinsate Blank QA/QC Summary Batch 08-0120

BLANK: A procedural blank (PB) was prepared with the analytical batch. Blanks are analyzed to ensure the sample extraction and analysis methods were free of contamination. **08-0120** – No exceedences noted. Comments - No target analytes were detected in the procedural blank. LABORATORY A laboratory control sample (LCS) was prepared with the analytical batch. The percent CONTROL recoveries of target analytes were calculated to measure data quality in terms of accuracy. SAMPLE: 08-0120 – No exceedences noted. **Comments** – All percent recoveries of spiked target analytes were within the laboratory control limit (50-120%). **SURROGATES:** Two surrogate compounds were added prior to extraction, including PCB 34 and PCB 152. The recovery of each surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency). **08-0120** – No exceedences noted. **Comments** – Percent recoveries for all surrogate compounds were within the laboratory control limits (30 – 150% recovery). **CALIBRATIONS:** The GC/ECD was calibrated with a minimum of 6 level curve, with a correlation coefficient of >0.995. Each batch of samples analyzed is bracketed by continuing calibration verification (CCV) sample, run at a frequency of minimally every 24 hours. The PD between the initial calibration (ICAL) and the continuing calibration samples should be <20% for each compound. Additionally an Independent Calibration Check (ICC) sample is run immediately following the ICAL. The ICC is to have a percent difference < 20%. **08-0120** – No calibration exceedences noted.

Comments - None

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Rinsate Blank Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-011
Battelle ID	Q2811-P
Sample Type	SA
Collection Date	05/01/08
Extraction Date	05/08/08
Analysis Date	06/16/08
Analytical Instrument	ECD
% Moisture	NA
% Lipid	NA
Matrix	WATER
Sample Size	1.00
Size Unit-Basis	L_LIQUID
Units	NG/L_LIQUID
4,4'-DDD	1.25 U
4,4'-DDE	1.26 U
4,4'-DDT	1.25 U
aldrin	1.25 U
a-chlordane	1.25 U
g-chlordane	1.26 U
Lindane	1.25 U
cis-nonachlor	1.25 U
trans-nonachlor	1.25 U
oxychlordane	1.25 U
dieldrin	1.25 U
endosultan I	1.25 U
endosultan II	1.25 U
endrin	1.25 U
heptachlor apovide	1.25 U
	1.25 U
methoxychlor	1.25 0
Toyanhene	1.23 0
Cl2(8)	1 25 U
Cl3(18)	1.25 U
Cl3(28)	1.25 U
Cl4(44)	1.25 U
Cl4(49)	1.26 U
Cl4(52)	1.26 U
Cl4(66)	1.26 U
Cl5(87)	1.25 U
Cl5(101)	1.25 U
CI5(105)	1.25 U
CI5(118)	1.27 U
Cl6(128)	1.25 U
Cl6(138)	1.27 U
Cl6(153)	1.25 U
Cl7(170)	1.25 U
	1.25 U
	1.24 U
	1.24 U
	1.25 U
	1.25 U
CI3(200)	1.20 U
Total PCB	45 12
	70.12

Surrogate Recoveries (%)

Cl3(34)	63
Cl6(152)	70

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Rinsate Blank Analysis Project Number: G606441-DUXCHEM

Client ID	Procedural Blank	
Battelle ID	BI 793PB-P	
Sample Type	PR	
Collection Date	05/08/08	
Extraction Date	05/08/08	
Analysis Date	06/16/08	
Analytical Instrument	ECD	
% Moisture	NA	
% Lipid	NA	
Matrix	WATER	
Sample Size	1 00	
Size Unit-Basis		
Units	NG/L LIQUID	
4,4'-DDD	1.25 U	
4,4'-DDE	1.26 U	
4,4'-DDT	1.25 U	
aldrin	1.25 U	
a-chlordane	1.25 U	
g-chlordane	1.26 U	
Lindane	1.25 U	
cis-nonachlor	1.25 U	
trans-nonachlor	1.25 U	
oxychlordane	1.25 U	
dieldrin	1.25 U	
endosulfan I	1.25 U	
endosulfan II	1.25 U	
endrin	1.25 U	
heptachlor	1.25 U	
heptachlor epoxide	1.25 U	
Hexachlorobenzene	1.25 U	
methoxychlor	1.25 U	
Toxaphene	100.2 U	
Cl2(8)	1.25 U	
Cl3(18)	1.25 U	
Cl3(28)	1.25 U	
CI4(44)	1.25 U	
014(49)	1.26 U	
014(52)	1.26 U	
	1.26 U	
	1.25 U	
	1.25 U	
CI5(105)	1.25 U	
CIG(110)	1.27 U 4.05 H	
	1.25 U	
CIG(150)	1.27 U	
CID(100)	1.25 U	
CI7(180)	1.20 U 1.25 I I	
CI7(183)	1.25 U	
CI7(184)	1.24 U	
CI7(187)	1.24 U	
CI8(105)	1.25 U 1.25 I I	
CIQ(206)	1.25 U 1.25 II	
CI10(200)	1.25 U	
Total PCB	1.25 U	
	40.12	

Surrogate Recoveries (%)

Cl3(34)	62
Cl6(152)	67

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Rinsate Blank Analysis Project Number: G606441-DUXCHEM

	Laboratory Control		
Client ID	Sample		
	Gampie		
Battelle ID	BL794LCS-P		
Sample Type	LCS		
Collection Date	05/08/08		
Extraction Date	05/08/08		
Analysis Date	06/16/08		
Analytical Instrument	ECD		
% Moisture	NA		
% Lipid	NA		
Matrix	WATER		
Sample Size	1.00		
Size Unit-Basis	L_LIQUID		
Units	NG/L_LIQUID	Target % Recovery	Qualifier
4,4'-DDD	26.9	30.02 90	
4,4'-DDE	25.3	30.02 84	
4,4'-DDT	28.05	30.01 93	
aldrin	21.16	30.01 71	
a-chlordane	25.99	30.02 87	
g-chlordane	26.65	30.05 89	
Lindane	24.12	30.02 80	
cis-nonachlor	25.12	30.02 84	
trans-nonachlor	26.76	30.04 89	
oxychlordane	25.84	30.16 86	
dieldrin	25.2	30.02 84	
endosulfan I	22.75	30.02 76	
	21.89	30.02 73	
endrin	24.06	30.01 80	
neptachlor	22.48	30.02 75	
	20.79	30.03 89	
methoweblor	19.15	30.05 64	
Toxanhene	100.2	30.01 102	
	10.2 0	20.00 65	
CI2(0)	21.87	30.09 73	
CI3(28)	20.68	30.03 60	
Cl4(44)	24.23	30.06 81	
Cl4(49)	24.59	30.12 82	
Cl4(52)	23.56	30.00 79	
Cl4(66)	26.05	30.03 87	
CI5(87)	24.37	29.74 82	
CI5(101)	25.64	30.06 85	
CI5(105)	25.95	30.03 86	
CI5(118)	27.55	30.03 92	
CI6(128)	26.59	30.18 88	
Cl6(138)	25.85	30.06 86	
Cl6(153)	26.48	30.03 88	
CI7(170)	28.64	30.15 95	
CI7(180)	27.88	30.12 93	
CI7(183)	27.71	30.12 92	
CI7(184)	27.04	30.12 90	
CI7(187)	26.07	30.09 87	
Cl8(195)	27.28	30.09 91	
Cl9(206)	26.92	30.09 89	
CI10(209)	26.11	30.03 87	
Total PCB	913.68		

Surrogate Recoveries (%)

Cl3(34)	69
Cl6(152)	75

Table II-1: Completeness Checklist

Quality Assurance/Quality Control Questions	Yes/No? Comments?
1. Was the report signed by the responsible applicant approved representative?	Yes
2. Were the methods for sampling, chemical and biological testing described in the	
Sampling and Analysis Plan (SAP) and the Laboratory QA Plan (LQAP) followed?	Yes
3. If not, were deviations documented?	NA
4. Was the SAP approved by the New England District?	Yes
	X
5. Did the applicant use a laboratory with a LQAP on file at the New England District?	Yes
6. Did the samples adequately represent the physical/chemical variability in the dredging	
area?	Yes
7. Were the correct stations sampled (include the precision of the navigation method	
used)?	Yes
8. Were the preservation and storage requirements in Chapter 8 of the EPA/Corps	
QA/QC Manual (EPA/USACE 1995) and EPA (2001d) followed?	Yes
9. Were the samples properly labeled?	Yes
10. Were all the requested data included?	Yes
11. Were the reporting limits met?	Yes
12. Were the chain-of-custody forms properly processed?	Yes
13. Were the method blanks run and were the concentration below the acceptance	
criteria?	Yes
14. Was the MDL study performed on each matrix (with this data submission) or within	
the last 12 months?	Yes
15. Were the SRM/CRM analyses within acceptance criteria?	No. See checklists for individual parameters.
16. Were the matrix spike/matrix spike duplicates run at the required frequency and was	
the percent recovery/RPD within the acceptance criteria?	No. See checklists for individual parameters.
17. Were the duplicate samples analyzed and were the RPDs within the required	
acceptance criteria?	Yes
18. For each analytical fraction of organic compounds, were recoveries for the internal	
standard within the acceptance criteria?	Yes
19. Were surrogate recoveries within the required acceptance criteria?	Yes
20. Were corrective action forms provided for all non-conforming data?	Yes
21. Were all the species-specific test conditions in Appendix V met?	NA
22. Were the test-specific age requirements met for each test species?	NA
23. Was the bulk physical/chemical testing performed on the sediments/composites that	
were biologically tested?	NA
24. Were the mortality acceptance criteria met for the water column and sediment toxicity	
tests?	NA
25. Were the test performance requirements in Table 11.3 of EPA (1994a) met	NA

 Table II-3: Quality Control Summary for Analyses of Pesticides and PCB in Sediment and Rinsate Blank Samples

 Battelle Duxbury batches 08-0120 (Rinsate Blank) and 08-0130 (Sediments)

 Method Reference Number: 8081B

Quality Control (QC)	Acceptance Criteria*	Criteria Met?	List results outside criteria	Location of Results
Element	-	Yes/No	(Cross-reference results table in data report)	(Retained at Lab or in Data Package)
Initial Calibration	Must be performed prior to the analysis of any QC sample or field sample $r^2 \ge 0.995$	Yes		In Data Package
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)	Yes		Retained at lab
Calibration Verification (Second Source)	Once, after initial calibration (<20%D)	Yes		In Data Package
Continuing Calibration	Every 24 hours (+ 20% D)	Yes		In Data Package
Standard Reference Materials	+/- 30% PD plus variance	No	PCB 209 was recovered high and outside criteria in batch 08-0130.	In Data Package
Method Blank	No target analytes > 5 x MDL	Yes		In Data Package
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One set (MS/MSD) per group of field samples. Must contain all target analytes. (Recovery Limits 50 to 120%; RPD <30%)	Yes		In Data Package
Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD < 30%)	Yes		In Data Package
Surrogate Recoveries	Calculate % recovery (30 to 150% recovery)	Yes		In Data Package

* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.
PAH Data

This page intentionally left blank

PAH – SEDIMENT QA/QC SUMMARY Batch 08-0150

PROJECT:	USACE – New England District; Searsport Sediment Analysis
PARAMETER:	РАН
LABORATORY:	Battelle, Duxbury, MA
MATRIX:	Sediment
SAMPLE CUSTODY:	Sediment cores for this project were composited on 4/30/2008, 5/1/2008, and 5/2/2008. The composites were hand delivered to the Chemistry Sample Custodian on 5/15/2008. The samples were received in good condition and no custody issues were noted. Samples were logged into Battelle LIMS and received unique IDs. Composite sediment

samples were fogged into Batterie LIMS and received unique IDs. Composite sedimer samples were stored in the walk-in freezer until sample preparation could begin. Samples were originally extracted as batch 08-0130. However, due to failures in some QC samples, the sediments were re-extracted for PAH compounds as batch 08-0150.

	Reference Method	Method Blank	Surrogate Recovery	LCS Recovery	MS Recovery	SRM Percent Difference	Sample Replicate Relative Percent Difference	Detection Limits (ug/kg dry wt)
PAH	General	<5xMDL	30-150%	50-120%	50-120%	Average PD	> 30%	MDL:
	NS&T		Recovery	Recovery	Recovery	< 30%	RPD	0.15 – 0.57 RL:
					(analyte conc. in MS must be >5x background)	(for analytes > 5 x MDL)	(analytes must be > 10x MDL to be used for data quality assessment)	0.74 – 1.47

METHOD: Sediment samples were extracted for PAH following general NS&T methods. Approximately 30 g of sediment was spiked with surrogates and extracted three times with dichloromethane using shaker table techniques. The combined extract was dried over anhydrous sodium sulfate, concentrated, processed through alumina cleanup column, concentrated, and fortified with internal standards (IS). Extracts intended for PAH analysis were analyzed using gas chromatography/mass spectrometry (GC/MS) operating in the selected ion monitoring (SIM) mode, following general NS&T methods. Sample data were quantified by the method of internal standards, using the spiked IS compounds.

HOLDINGFrozen sediment samples were prepared for analysis in one analytical batch and were
extracted within one year of sample collection. All extracts were analyzed within 40 days
of extraction.

Batch	Extraction Date	Analysis Date
08-0150	6/17/2008	6/25/2008 - 6/26/2008

PAH – SEDIMENT QA/QC SUMMARY Batch 08-0150

BLANK:	A procedural blank (PB) was prepared with each analytical batch. Blanks were analyzed to ensure the sample extraction and analysis methods were free of contamination.
	08-0150 – No exceedences noted.
	Comments- No target PAH were detected in the PB.
LABORATORY CONTROL	A laboratory control sample (LCS) was prepared with each analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.
SAMITLE;	08-0150 – One exceedence noted.
	Comments – All target analytes were recovered within the laboratory control limits (50-120%), except for naphthalene. This compound was under-recovered at 48%. Chromatography and calculations were reviewed. No discrepancies were found. Naphthalene data maybe biased low in field samples. The exceedence was qualified with an "N".
MATRIX SPIKE/MATRIX SPIKE DUPLICATE:	A matrix spike (MS) and matrix spike duplicate sample (MSD) was prepared with this analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy. The RPD between percent recoveries were calculated to measure the data quality in terms of precision.
	08-0150 - 2 percent recovery exceedences noted. No RPD exceedences noted.
	Comments – All target analyte were recovered within the laboratory control limits (50-120%), except for naphthalene. This compound was under-recovered in both the MS and MSD (background sample HAC-012) at 45%, and 47%, respectively. Chromatography and calculations were reviewed. No discrepancies were found. Naphthalene data maybe biased low in the field samples. The exceedence was qualified with an "N". The RPDs between percent recoveries were all within the laboratory control limits (<30% RPD).
REPLICATES:	A laboratory replicate (duplicate) sample was prepared with each analytical batch. The RPD between duplicate analyses for each target analyte is calculated to measure data quality in terms of precision.
	08-0150 – No exceedences noted.
	Comments – The RPDs between duplicate analyses of all target analytes were within the laboratory control limits (<30% RPD).
SRM:	A standard reference material (NIST SRM 1944) was prepared with the analytical batch. The percent difference (PD) between the measured value and the certified range was calculated to measure data quality in terms of accuracy.
	08-0150 – One exceedence noted.
	Comments – Benzo(a)pyrene was under recovered at 43.8% difference (passing criteria is 33.02% difference). Benzo(a)pyrene results in the field samples may be biased low.

PAH – SEDIMENT QA/QC SUMMARY Batch 08-0150

SURROGATES: Four surrogate compounds were added prior to extraction, including naphthalene-d8, acenaphthene-d10, phenanthrene-d10, and benzo(a)pyrene-d12. The recovery of each surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency).

08-0150 – No exceedences noted.

Comments – All surrogate percent recoveries were within the laboratory control limits (30-150%).

- **CALIBRATIONS:** The GC/MS is calibrated with a minimum of a 5 level curve. The RSD between response factors for the individual target analytes must be $\leq 25\%$. Each batch of samples analyzed is bracketed by a continuing calibration verification sample (CCV), run at a frequency of minimally every 24 hours. The PD between the initial calibration RF and the CCV should be $\leq 25\%$ for individual analytes, with a mean PD $\leq 15\%$. Additionally, an independent calibration check sample (ICC) is run immediately after each initial calibration. The percent difference between the ICC and the initial calibration should be $\leq 25\%$.
 - 08-0150 No initial calibration exceedences noted. No ICC exceedences noted. No CCV exceedences noted.

Comments – All calibration criteria have been met.

Battelle

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-012	HAC-013	HAC-014	HAC-015	HAC-016
Battelle ID	Q2888-P1	Q2889-P1	Q2890-P1	Q2891-P1	Q2892-P1
Sample Type	SA	SA	SA	SA	SA
Collection Date	05/02/08	05/02/08	05/02/08	05/02/08	05/02/08
Extraction Date	06/17/08	06/17/08	06/17/08	06/17/08	06/17/08
Analysis Date	06/25/08	06/25/08	06/25/08	06/25/08	06/26/08
Analytical Instrument	MS	MS	MS	MS	MS
% Moisture	59.18	58.14	59.81	59.83	59.34
% Lipid	NA	NA	NA	NA	NA
Matrix	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
Sample Size	12.12	12.84	12.08	12.02	12.60
Size Unit-Basis	G DRY				
Units	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY	UG/KG_DRY
Naphthalene	10.66	11.12	12.38	6.28	6.63
Acenaphthylene	23.38	24.68	23.87	14.12	14.7
Acenaphthene	4.02	4.19	4.69	2.42	2.47
Fluorene	7.7	7.85	8.56	4.53	4.52
Anthracene	22.93	22.99	23.24	12.69	12.93
Phenanthrene	79.11	80.78	79.36	46.42	47.58
Fluoranthene	172.09	177.95	173.59	104.52	108.07
Pyrene	158.29	164.93	161.85	93.85	97.18
Benzo(a)anthracene	68.9	70.48	70.55	40.23	41
Chrysene	82.3	86.62	87.54	51.3	51.39
Benzo(b)fluoranthene	88.95	94	92.17	54.61	55.13
Benzo(k)fluoranthene	86.21	95.98	89.47	55.8	56.42
Benzo(a)pyrene	91.75	96.94	93.14	55.58	56.22
Indeno(1,2,3-cd)pyrene	81.69	87.13	83.19	52.12	52.98
Dibenz(a,h)anthracene	17.69	18.5	18.25	10.98	11.2
Benzo(g,h,i)perylene	75.56	80.52	76.86	47.89	48.27
Surrogate Recoveries (%)					
Naphthalene-d8	52	56	58	52	51
Acenaphthene-d10	73	79	80	78	73
Phenanthrene-d10	86	92	92	94	86
Benzo(a)pyrene-d12	109	120	118	120	109

Battelle

The Business of Innovation

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Battelle ID Q2893-P1 Q2894-P1 Q2895-P1 Q2896-P1 Q2896-P1 Q2896-P1 Q2897-P1 Sample Type SA SA </th <th>Client ID</th> <th>HAC-017</th> <th>HAC-019</th> <th>HAC-020</th> <th>HAC-021</th> <th>HAC-022</th>	Client ID	HAC-017	HAC-019	HAC-020	HAC-021	HAC-022
Sample Type SA	Battelle ID	Q2893-P1	Q2894-P1	Q2895-P1	Q2896-P1	Q2897-P1
Collection Date 05/02/08 04/30/08 04/30/08 04/30/08 06/30/08 05/07/08 Extraction Date 06/17/08	Sample Type	SA	SA	SA	SA	SA
Extraction Date 06/17/08 06/13 06/17 06/13 <	Collection Date	05/02/08	04/30/08	04/30/08	04/30/08	05/01/08
Analysis Date 06/26/08 06/26/08 06/26/08 06/26/08 06/26/08 Analytical Instrument MS MS MS MS MS MS Analytical Instrument MS MA MA NA NA September 29.4 % Lipid NA NA NA NA NA NA Sample Size 12.84 13.88 13.11 17.99 21.32 Size Unit-Basis G_DRY UG/KG_DRY UG/KG_DRY UG/KG_DRY UG/KG_DRY Naphthalene 6.55 10.08 17.66 5.06 23.57 Acenaphthylene 14.11 11.72 16.12 4.12 8.71 Acenaphthylene 14.5 5.45 11.21 2.59 12.27 Antrixcene 12.55 13.14 29.83 5.2.3 20.06 Phenanthrene 46.26 45.42 69.24 16.93 46.41 Fluorantene 13.82 39.49 61.2 14.07 35.87	Extraction Date	06/17/08	06/17/08	06/17/08	06/17/08	06/17/08
Analytical Instrument MS MS MS MS MS MS % Moisture 57.72 54.71 56.47 41.53 22.44 Matrix SEDIMENT	Analysis Date	06/26/08	06/26/08	06/26/08	06/26/08	06/26/08
Moisture 57.72 54.71 56.47 41.53 29.44 % Lipid NA NA NA NA NA NA NA Sample Size 12.84 13.88 13.11 17.99 21.32 Size Unit-Basis G_DRY G_DRY G_DRY G_DRY G_DRY G_DRY 0.90 Units UGKC DRY UGKG DRY UGKC DR	Analytical Instrument	MS	MS	MS	MS	MS
NA NA NA NA NA NA NA Matrix SEDIMENT	% Moisture	57 72	54 71	56.47	41 53	29.44
Matrix SEDIMENT <	% Lipid	NA	NA	NA	NA	NA
Sample Size 12.84 13.88 13.11 17.99 21.32 Size Unit-Basis G_DRY G_DRY G_DRY G_DRY G_DRY G_DRY G_DRY G_DRY UG/KG_DRY	Matrix	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT	SEDIMENT
Size Unit-Basis G_DRY UG/KG_DRY	Sample Size	12.84	13.88	13.11	17.99	21.32
Units UG/KG_DRY UG	Size Unit-Basis	G DRY				
Naphthalene 6.55 10.08 17.66 5.06 23.57 Acenaphthylene 14.11 11.72 16.12 4.12 8.71 Acenaphthylene 4.5 5.45 11.21 2.59 12.27 Anthracene 12.55 13.14 29.83 5.23 20.6 Phenanthrene 46.26 45.42 69.24 16.93 48.41 Fluorenthene 103.58 87.46 114.65 26.62 71.62 Pyrene 93.82 89.64 143.83 32.03 113.71 Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(a)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(a)prene 54.51 47.59 69.75 15.08 37.17 Indenci(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.45 Surrogate Recoveries (%) 73 </td <td>Units</td> <td>UG/KG DRY</td> <td>UG/KG DRY</td> <td>UG/KG DRY</td> <td>UG/KG DRY</td> <td>UG/KG DRY</td>	Units	UG/KG DRY				
Naphthalene 6.55 10.08 17.66 5.06 23.57 Acenaphthylene 14.11 11.72 16.12 4.12 8.71 Acenaphthylene 2.33 2.5 6.68 1.19 7 Fluorene 4.5 5.45 11.21 2.59 12.27 Anthracene 12.55 13.14 29.83 5.23 20.6 Phenanthrene 46.26 45.42 69.24 16.93 48.41 Fluoranthene 103.58 87.46 114.65 26.62 71.62 Pyrene 93.82 89.64 143.83 32.03 113.71 Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(c)(buroanthene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9						
Acenaphthylene 14.11 11.72 16.12 4.12 8.71 Acenaphthene 2.33 2.5 6.68 1.19 7 Acenaphthene 12.55 13.14 29.83 5.23 20.6 Phenanthrene 46.26 45.42 69.24 16.93 48.41 Fluoranthene 103.58 87.46 114.65 26.62 71.62 Pyrene 93.82 89.64 143.83 32.03 113.71 Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 55.33 45.9 71.62 14.58 39.1 Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Dibenz(a,h)pathracene 10.72 9.73 13.18 3.34 7.52 Dibenz(a,h)pathracene 10.72 9.73 13.18 3.34 7.52 Benzo(a)pyrene 46.97	Naphthalene	6.55	10.08	17.66	5.06	23.57
Acenaphthene2.332.56.681.197Fluorene4.55.4511.212.5912.27Anthracene12.5513.1429.835.2320.6Phenanthrene46.2645.4269.2416.9348.41Fluoranthene103.5887.46114.6526.6271.62Pyrene93.8289.64143.8332.03113.71Benzo(a)anthracene39.4539.4961.214.0735.87Chrysene49.6247.1983.6316.2450.2Benzo(b)fluoranthene52.7746.1269.0815.7541.84Benzo(b)fluoranthene55.3345.971.6214.5839.11Indeno(1,2,3-cd)pyrene54.5147.5969.7515.0837.17Indeno(1,2,3-cd)pyrene51.3640.0249.0211.6524.57Dibenz(a,h)anthracene10.729.7313.183.347.52Benzo(g,h,i)pyrelen46.9738.3247.1311.6524.45Surrogate Recoveries (%)Naphthalene-d85056574847Acenaphthene-d107076786078Benzo(a)pyrene-d121061121158399	Acenaphthylene	14.11	11.72	16.12	4.12	8.71
Fluorene4.55.4511.212.5912.27Anthracene12.5513.1429.835.2320.6Phenanthrene46.2645.4269.2416.9348.41Fluoranthrene103.5887.46114.6526.6271.62Pyrene93.8289.64143.8332.03113.71Benzo(a)anthracene39.4539.4961.214.0735.87Chrysene49.6247.1983.6316.2450.2Benzo(k)fluoranthene52.7746.1269.0815.7541.84Benzo(k)fluoranthene55.3345.971.6214.5839.1Benzo(k)fluoranthene55.3345.971.6214.5839.1Benzo(k)fluoranthene51.3640.0249.0211.6524.57Dibenz(a,h)anthracene10.729.7313.183.347.52Benzo(g,h,i)perylene46.9738.3247.1311.6524.45Vurgate Recoveries (%)Naphthalene-d85056574847Acenapthene-d107076786067Phenanthrene-d108490906978Benzo(a)pyrene-d121061121158399	Acenaphthene	2.33	2.5	6.68	1.19	7
Anthracene 12.55 13.14 29.83 5.23 20.6 Phenanthrene 46.26 45.42 69.24 16.93 48.41 Fluoranthene 103.58 87.46 114.65 26.62 71.62 Pyrene 93.82 89.64 143.83 32.03 113.71 Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 55.33 45.9 71.62 14.58 39.4 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.4 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g),h.j)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveri	Fluorene	4.5	5.45	11.21	2.59	12.27
Phenanthrene 46.26 45.42 69.24 16.93 48.41 Fluoranthene 103.58 87.46 114.65 26.62 71.62 Pyrene 93.82 89.64 143.83 32.03 113.71 Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) 46.97 76 78 60 67 Naphthalene-d8 50 56 57 48 47 Acenaphthene-d10 <t< td=""><td>Anthracene</td><td>12.55</td><td>13.14</td><td>29.83</td><td>5.23</td><td>20.6</td></t<>	Anthracene	12.55	13.14	29.83	5.23	20.6
Fluoranthene 103.58 87.46 114.65 26.62 71.62 Pyrene 93.82 89.64 143.83 32.03 113.71 Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a),hanthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) - - - - - - Naphthalene-d8 50 56 57 48 47 Acenaphthene-d10 <td>Phenanthrene</td> <td>46.26</td> <td>45.42</td> <td>69.24</td> <td>16.93</td> <td>48.41</td>	Phenanthrene	46.26	45.42	69.24	16.93	48.41
Pyrene93.8289.64143.8332.03113.71Benzo(a)anthracene39.4539.4961.214.0735.87Chysene49.6247.1983.6316.2450.2Benzo(b)fluoranthene52.7746.1269.0815.7541.84Benzo(k)fluoranthene55.3345.971.6214.5839.1Benzo(a)pyrene54.5147.5969.7515.0837.17Indeno(1,2,3-cd)pyrene51.3640.0249.0211.6524.57Dibenz(a,h)anthracene10.729.7313.183.347.52Benzo(g),h.i)perylene46.9738.3247.1311.6524.57Surrogate Recoveries (%)Naphthalene-d85056574847Acenaphthene-d107076786067Phenanthrene-d108490906978Benzo(a)pyrene-d121061121158399	Fluoranthene	103.58	87.46	114.65	26.62	71.62
Benzo(a)anthracene 39.45 39.49 61.2 14.07 35.87 Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.57 Surrogate Recoveries (%)	Pyrene	93.82	89.64	143.83	32.03	113.71
Chrysene 49.62 47.19 83.63 16.24 50.2 Benzo(b)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.57 Surrogate Recoveries (%) 76 77 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Benzo(a)anthracene	39.45	39.49	61.2	14.07	35.87
Berzo(b)fluoranthene 52.77 46.12 69.08 15.75 41.84 Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.57 Surrogate Recoveries (%) 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Chrysene	49.62	47.19	83.63	16.24	50.2
Benzo(k)fluoranthene 55.33 45.9 71.62 14.58 39.1 Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) 46.97 38.32 47.13 11.65 24.45 Naphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Benzo(b)fluoranthene	52.77	46.12	69.08	15.75	41.84
Benzo(a)pyrene 54.51 47.59 69.75 15.08 37.17 Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) Surrogate Recoveries (%) 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Benzo(k)fluoranthene	55.33	45.9	71.62	14.58	39.1
Indeno(1,2,3-cd)pyrene 51.36 40.02 49.02 11.65 24.57 Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) Xaphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Benzo(a)pyrene	54.51	47.59	69.75	15.08	37.17
Dibenz(a,h)anthracene 10.72 9.73 13.18 3.34 7.52 Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) Xaphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Indeno(1,2,3-cd)pyrene	51.36	40.02	49.02	11.65	24.57
Benzo(g,h,i)perylene 46.97 38.32 47.13 11.65 24.45 Surrogate Recoveries (%) Xaphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Dibenz(a,h)anthracene	10.72	9.73	13.18	3.34	7.52
Surrogate Recoveries (%) Naphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Benzo(g,h,i)perylene	46.97	38.32	47.13	11.65	24.45
Surrogate Recoveries (%) 50 56 57 48 47 Naphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99						
Naphthalene-d8 50 56 57 48 47 Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Surrogate Recoveries (%)					
Acenaphthene-d10 70 76 78 60 67 Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Naphthalene-d8	50	56	57	48	47
Phenanthrene-d10 84 90 90 69 78 Benzo(a)pyrene-d12 106 112 115 83 99	Acenaphthene-d10	70	76	78	60	67
Benzo(a)pyrene-d12 106 112 115 83 99	Phenanthrene-d10	84	90	90	69	78
	Benzo(a)pyrene-d12	106	112	115	83	99

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Battelie ID BL947PB-P Sample Type PB Collection Date 06/17/08 Analysis Date 06/25/08 Analysis Date 06/25/08 Analysis Date 06/25/08 Analysis Date 06/25/08 Moisture 53.62 % Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit-Basis G_DRY Units UG/KG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Phenanthrene 0.74 U Floorene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Benzo(k)fluoranthene	Client ID	Procedural Blank	
Sample Type Definition Collection Date 06/17/08 Extraction Date 06/25/08 Analysis Date 06/25/08 Moliture 53.62 % Molisture 53.62 % Molisture 06/25/08 Sze Unit-Basis 6_DPX Units UGKG DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Antracene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Benzo(a)Intracene 0.74 U Benzo(k)fluoranthene 0.74 U <	Battelle ID	BI 947PB-P	
Collection Date 06/17/08 Extraction Date 06/17/08 Analysis Date 06/25/08 Analysis Date 05/25/08 Analysis Date 53.62 % Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit-Basis G_DRY Units UGKG DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(k/fluoranthene 1.47 U Benzo(k/fluoranthene 1.47 U Benzo(k/fluoranthene 1.74 U	Sample Type	PB	
Extraction Date 08/17/08 Analysis Date 08/25/08 Analysis Date 08/25/08 Analytical Instrument MS % Moisture 53.62 % Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit Basis G_DRY Units UGKG DRY Naphthalene 0.74 U Accmaphthylene 0.74 U Accmaphthylene 0.74 U Accmaphthylene 0.74 U Picorene 0.74 U Picorene 0.74 U Phenanthrene 0.74 U Prome 0.74 U Benzo(a)anthracene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluorenthene 0.74 U <td< td=""><td>Collection Date</td><td>06/17/08</td><td></td></td<>	Collection Date	06/17/08	
Analysis Date 06/25/08 Analytical Instrument MS Moisture 53.62 % Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit-Basis G DRY Units UG/KG DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Phenanthrene 0.74 U Fluorene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Benzo(a)panthracene 0.74 U Benzo(k)fluoranthene 1.47 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthracene 0.74 U	Extraction Date	06/17/08	
Analytical Instrument MS % Moisture 53.62 % Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit-Basis G_DRY Units UG/KG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Picoranthene 0.74 U Phonanthrene 0.74 U Phonanthrene 0.74 U Pyrene 0.74 U Benzo(a)parthracene 0.74 U Benzo(k)pfuloranthene 0.74 U Benzo(k)pfuloranthene 0.74 U Benzo(k)prene 0	Analysis Date	06/25/08	
% Moisture 53.62 % Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit-Basis G_DRY Units UG/KG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Fluorene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(a)anthracene 0.74 U Benzo(a)pyrene 0.74 U	Analytical Instrument	MS	
% Lipid NA Matrix SEDIMENT Sample Size 13.93 Size Unit-Basis G_DRY Units UG/KG DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 1.47 U Benzo(k)fluoranthene 0.74 U Dibenz(a,h)anthracene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U <td>% Moisture</td> <td>53.62</td> <td></td>	% Moisture	53.62	
Matrix SEDIMENT Sample Size 13.93 Size Unite Size UniteBasis G_DRY Units UG/KG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Phorenthrene 0.74 U Fluorene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthrene 1.47 U Benzo(a)pyrene 0.74 U Indeno(1.2,3-d)pyrene 0.74 U Indeno(2,3-d)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(b,h)perylene 0.74 U Benzo(b,h)perylene 0.74 U Benzo(a)pyrene 0.74 U Benzo(a)pyrene 0.74 U Benzo(b,h)perylene 0.74 U Benzo(a)pyrene 0.74 U <tr< td=""><td>% Lipid</td><td>NA</td><td></td></tr<>	% Lipid	NA	
Sample Size 13.93 Size Unit-Basis G_DRY Units UGKG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(a)pyrene 0.74 U Benzo(a)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(a)pyrene 0.74 U Ben	Matrix	SEDIMENT	
Size Unit-Basis G_DRY UG/KG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Fluorene 0.74 U Phenathrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b,h)iperylene 0.74 U Benzo(b,h)iperylene 0.74 U Benzo(b,h)iperylene 0.74 U Benzo(b,h)iperylene 0.74 U Benzo(b,pyrenethree 0.74 U Benzo(b,pyrenethree 0.74 U Benzo(b,pyrene.f10<	Sample Size	13.93	
Units UG/KG_DRY Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthylene 0.74 U Acenaphthene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Pluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(c)(h)uoranthene 0.74 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Benzo(a)pyrene 0.74 U Benzo(a)pyrene-d10 71	Size Unit-Basis	G_DRY	
Naphthalene 0.74 U Acenaphthylene 0.74 U Acenaphthene 0.74 U Acenaphthene 0.74 U Anthracene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Berzo(a)anthracene 0.74 U Berzo(a)anthracene 0.74 U Berzo(a)anthracene 0.74 U Berzo(a)pyrene 0.74 U Berzo(a)pyr	Units	UG/KG_DRY	
Naphtalene 0.74 U Acenaphthylene 0.74 U Acenaphthene 0.74 U Fluorene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Fluoranthene 0.74 U Phenanthrene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Benzo(a),hainthracene 0.74 U Benzo(a),pyrene-d10 71			
Acenaphthylene 0.74 U Acenaphthene 0.74 U Fluorene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Pluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(a)prene 0.74 U Dibenz(a,h)anthracene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Benzo(preschild) 88 Benzo(pyrene-d12 99 <td>Naphthalene</td> <td>0.74 U</td> <td></td>	Naphthalene	0.74 U	
Acenaphthene 0.74 U Fluorene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Fluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Benzo(g,h,i)perylene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d112 99	Acenaphthylene	0.74 U	
Fluorene 0.74 U Anthracene 0.74 U Phenanthrene 0.74 U Fluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Acenaphthene	0.74 U	
Anthracene 0.74 U Phenanthrene 0.74 U Fluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Surrogate Recoveries (%) 74 U Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Fluorene	0.74 U	
Phenanthrene 0.74 U Fluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) V Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Anthracene	0.74 U	
Fluoranthene 0.74 U Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) V Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d10 88	Phenanthrene	0.74 U	
Pyrene 0.74 U Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 1.47 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) V Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Fluoranthene	0.74 U	
Benzo(a)anthracene 0.74 U Chrysene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 1.47 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a, h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) 0.74 U Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Pyrene	0.74 U	
Chrysene 0.74 U Benzo(b)fluoranthene 0.74 U Benzo(k)fluoranthene 1.47 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) 0.74 U Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Benzo(a)anthracene	0.74 U	
Benzo(b)fluoranthene 0.74 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Chrysene	0.74 U	
Benzo(k)fituoranthene 1.47 U Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Benzo(b)fluoranthene	0.74 U	
Benzo(a)pyrene 0.74 U Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) 58 Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Benzo(k)fluoranthene	1.47 U	
Indeno(1,2,3-cd)pyrene 0.74 U Dibenz(a,h)anthracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%) Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Benzo(a)pyrene	0.74 U	
Dibenz(a,n)antrracene 0.74 U Benzo(g,h,i)perylene 0.74 U Surrogate Recoveries (%)	Indeno(1,2,3-cd)pyrene	0.74 U	
Surrogate Recoveries (%) Naphthalene-d8 Acenaphthene-d10 Phenanthrene-d10 Benzo(a)pyrene-d12 99	Dibenz(a,n)anthracene	0.74 U	
Surrogate Recoveries (%) Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99	Berizo(g,ri,r)peryiene	0.74 0	
Surrogate Recoveries (%) Naphthalene-d8 58 Acenaphthene-d10 71 Phenanthrene-d10 88 Benzo(a)pyrene-d12 99			
Naphthalene-d858Acenaphthene-d1071Phenanthrene-d1088Benzo(a)pyrene-d1299	Surrogate Recoveries (%)		
Acenaphthene-d1071Phenanthrene-d1088Benzo(a)pyrene-d1299	Naphthalene-d8	58	
Phenanthrene-d1088Benzo(a)pyrene-d1299	Acenaphthene-d10	71	
Benzo(a)pyrene-d12 99	Phenanthrene-d10	88	
	Benzo(a)pyrene-d12	99	

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	061122-01: Sand				
Battelle ID	BL948LCS-P				
Sample Type	LCS				
Collection Date	06/17/08				
Extraction Date	06/17/08				
Analysis Date	06/25/08				
Analytical Instrument	MS				
% Moisture	NA				
% Lipid	NA				
Matrix	SEDIMENT				
Sample Size	30.64				
Size Unit-Basis	G_DRY				
Units	UG/KG_DRY	Target	% Recovery	Qualifier	
Nanhthalene	31.42	65 32	48	Ν	
Acenanhthylene	33.07	65 30	- 1 0 51	IN IN	
Acenaphthene	35.5	65.32	54		
Fluorene	36.88	65 30	56		
Anthracene	33.65	65.32	52		
Phenanthrene	40.45	65.31	62		
Fluoranthene	46.65	65.31	71		
Pyrene	43.6	65.29	67		
Benzo(a)anthracene	38.47	65.29	59		
Chrysene	40.18	65.30	62		
Benzo(b)fluoranthene	38.75	65.31	59		
Benzo(k)fluoranthene	41.95	65.31	64		
Benzo(a)pyrene	35.65	65.31	55		
Indeno(1,2,3-cd)pyrene	39.65	65.31	61		
Dibenz(a,h)anthracene	41.42	65.32	63		
Benzo(g,h,i)perylene	42.39	65.30	65		

Surrogate Recoveries (%)

Naphthalene-d8	59
Acenaphthene-d10	62
Phenanthrene-d10	70
Benzo(a)pyrene-d12	71

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	080328-01: Nist SRM					
Client ID	1944					
Battelle ID	BL949SRM-P					
Sample Type	SRM					
Collection Date	06/17/08					
Extraction Date	06/17/08					
Analysis Date	06/25/08					
Analytical Instrument	MS					
% Moisture	1.3					
% Lipid	NA					
Matrix	SEDIMENT					
Sample Size	1.38					
Size Unit-Basis	G DRY	Certified		Passing	Actual	
Units	UG/KG_DRY	Value	+/-	%Difference	%Difference	Qualifier
Naphthalene	1233.42	1650	310.04	48.79	25.2	
Acenaphthylene	929.91					
Acenaphthene	276.01					
Fluorene	311.36					
Anthracene	1142.06	1770	329.93	48.64	35.5	
Phenanthrene	4109.65	5270	219.76	34.17	22	
Fluoranthene	7688.68	8920	320.23	33.59	13.8	
Pyrene	7729.36	9700	420.01	34.33	20.3	
Benzo(a)anthracene	3386.35	4720	109.98	32.33	28.3	
Chrysene	4280.03	5900	270.22	34.58	27.5	
Benzo(b)fluoranthene	2578.38	3870	419.90	40.85	33.4	
Benzo(k)fluoranthene	2645.66	4390	640.06	44.58	39.7	
Benzo(a)pyrene	2416.63	4300	129.86	33.02	43.8	N
Indeno(1,2,3-cd)pyrene	2172.48	2780	100.08	33.6	21.9	
Dibenz(a,h)anthracene	577.53	759	81.97	40.8	23.9	
Benzo(g,h,i)perylene	2093.97	2840	99.97	33.52	26.3	

Surrogate Recoveries (%)

Naphthalene-d8	56
Acenaphthene-d10	75
Phenanthrene-d10	84
Benzo(a)pyrene-d12	103

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-012	HAC-012			
Battelle ID	Q2888-P1	Q2888MS-P			
Sample Type	SA	MS			
Collection Date	05/02/08	5/2/2008			
Extraction Date	06/17/08	6/17/2008			
Analysis Date	06/25/08	6/25/2008			
Analytical Instrument	MS	MS			
% Moisture	59.18	59.18			
% Lipid	NA	NA			
Matrix	SEDIMENT	SEDIMENT			
Sample Size	12.12	6.23			
Size Unit-Basis	G_DRY	G_DRY			
Units	UG/KG_DRY	UG/KG_DRY	Target	% Recovery	Qualifier
Naphthalene	10.66	156.66	321.25	45	N
Acenaphthylene	23.38	216.71	321.17	60	
Acenaphthene	4.02	209.53	321.27	64	
Fluorene	7.7	234.02	321.14	70	
Anthracene	22.93	269.45	321.27	77	
Phenanthrene	79.11	321.38	321.20	75	
Fluoranthene	172.09	449.81	321.22	86	
Pyrene	158.29	432.99	321.12	86	
Benzo(a)anthracene	68.9	330.11	321.11	81	
Chrysene	82.3	326.74	321.14	76	
Benzo(b)fluoranthene	88.95	344.84	321.22	80	
Benzo(k)fluoranthene	86.21	352.7	321.22	83	
Benzo(a)pyrene	91.75	364.71	321.19	85	
Indeno(1,2,3-cd)pyrene	81.69	370.71	321.22	90	
Dibenz(a,h)anthracene	17.69	289.28	321.24	85	
Benzo(g,h,i)perylene	75.56	352.84	321.17	86	
Surrogate Recoveries (%)					
Naphthalene-d8	52	53			
Acenaphthene-d10	73	73			
Phenanthrene-d10	86	88			
Benzo(a)pyrene-d12	109	116			
	105	110			

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-012					
Pattolla ID	03000MSD D					
	Q2000W3D-F					
	1013D					
Collection Date	5/2/2006					
Extraction Date	6/17/2008					
Analysis Date	6/25/2008					
Analytical Instrument	MS					
% Moisture	59.18					
% Lipid	NA					
Matrix	SEDIMENT					
Sample Size	6.23					
Size Unit-Basis	G_DRY					
Units	UG/KG_DRY	Target	% Recovery	Qualifier	RPD (%)	Qualifier
Naphthalene	162.78	321.25	47	N	4.3	
Acenaphthylene	223.75	321.17	62		3.3	
Acenaphthene	216.49	321.27	66		3.1	
Fluorene	240.46	321.14	72		2.8	
Anthracene	271.3	321.27	77		0.0	
Phenanthrene	323.32	321.20	76		1.3	
Fluoranthene	445.43	321.22	85		1.2	
Pyrene	428.24	321.12	84		2.4	
Benzo(a)anthracene	324.51	321.11	80		1.2	
Chrysene	324.25	321.14	75		1.3	
Benzo(b)fluoranthene	336.37	321.22	77		3.8	
Benzo(k)fluoranthene	344.75	321.22	80		3.7	
Benzo(a)pyrene	358.13	321.19	83		2.4	
Indeno(1,2,3-cd)pyrene	362.46	321.22	87		3.4	
Dibenz(a,h)anthracene	285.44	321.24	83		2.4	
Benzo(g,h,i)perylene	344.64	321.17	84		2.4	

Surrogate Recoveries (%)

Naphthalene-d8	54
Acenaphthene-d10	74
Phenanthrene-d10	89
Benzo(a)pyrene-d12	114

Project Client: USACE - North Atlantic Division Project Name: Searsport Sediment Sample Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-013	HAC-013			
Battelle ID	Q2889-P1	Q2889DUP-P			
Sample Type	SA	QADU			
Collection Date	05/02/08	5/2/2008			
Extraction Date	06/17/08	6/17/2008			
Analysis Date	06/25/08	6/25/2008			
Analytical Instrument	MS	MS			
% Moisture	58.14	58.14			
% Lipid	NA	NA			
Matrix	SEDIMENT	SEDIMENT			
Sample Size	12.84	12.62			
Size Unit-Basis	G_DRY	G_DRY			
Units	UG/KG_DRY	UG/KG_DRY	RPD	Qualifier	
Naphthalene	11.12	10.63	4.5		
Acenaphthylene	24.68	24.47	0.9		
Acenaphthene	4.19	4.15	1.0		
Fluorene	7.85	7.7	1.9		
Anthracene	22.99	22.57	1.8		
Phenanthrene	80.78	78.88	2.4		
Fluoranthene	177.95	176.27	0.9		
Pyrene	164.93	162.1	1.7		
Benzo(a)anthracene	70.48	68.94	2.2		
Chrysene	86.62	84.17	2.9		
Benzo(b)fluoranthene	94	92.16	2.0		
Benzo(k)fluoranthene	95.98	89.69	6.8		
Benzo(a)pyrene	96.94	95.48	1.5		
Indeno(1,2,3-cd)pyrene	87.13	85.44	2.0		
Dibenz(a,h)anthracene	18.5	18.12	2.1		
Benzo(g,h,i)perylene	80.52	78.12	3.0		
Surrogate Recoveries (%)					
Naphthalene-d8	56	54			
Acenaphthene-d10	79	79			
Phenanthrene-d10	92	92			
Benzo(a)pyrene-d12	120	118			
- · · · · · · · · · - · -					

PAH – Rinsate Blank QA/QC Summary Batch 08-0120

PROJECT:	USACE – New England District; Searsport Rinsate Blank
PARAMETER:	
LABORATORY:	Battelle, Duxbury, MA
MATRIX:	Rinsate Blank
SAMPLE CUSTODY:	Two Rinsate blank samples, one from a vibracore and the other from sediment grab, were collected on 5/1/2008 and 5/2/2008, respectively. They were delivered to the Chemistry Sample Custodian on 5/6/2008. Upon arrival the cooler temperature was recorded at 4.0°C. The samples were received in good condition and no custody issues were noted. They were logged into Battelle LIMS to receive unique IDs. The rinsate blanks were stored in refrigerator at 4°C until sample preparation could begin. However, during storage one sample Q2812 (sediment grab rinsate) broke. The entire sample was lost.

	Reference Method	Method Blank	Surrogate Recovery	LCS Recovery	Detection Limits (ng/L)		
PAH	General	<5xMDL	30-150%	50-120%	MDL:		
	NS&T		Recovery	Recovery	0.59 – 1.95		
					<mark>RL:</mark>		
METHOD	:	The rinsa of contan extracted extracts v required a chromato	te blank samp nination. Appr three times wi vere then conc analysis. The graphy/mass s	le was analyze roximately 1 I ith dichlorome entrated, forti split extract for pectrometry (ed to ensure f of water wa ethane using s fied with inte or PAH was a GC/MS) oper	eld collection methods v s spiked with surrogates separatory funnel techniq rnal standard (IS) and sp nalyzed using gas rating in the selected ion	vere free and ues. Th lit for th

monitoring (SIM) mode, following general NS&T methods. Sample data were quantified by the method of internal standards, using the spiked IS compounds.

HOLDING TIMES: The rinsate blank sample was extracted within 7 days of sample collection and analyzed within 40 days of extraction.

Batch	Extraction Date	Analysis Date
08-0120	5/8/2008	5/30/2008

PAH – Rinsate Blank QA/QC Summary Batch 08-0120

BLANK:	A procedural blank (PB) was prepared with the analytical batch. Blanks are analyzed to ensure the sample extraction and analysis methods were free of contamination.
	08-0120 – No exceedences noted.
	Comments – Naphthalene was detected in the PB at a concentration < 5x MDL and below reporting limit, and was "J" qualified. The compound was detected in the rinsate blank sample at a concentration greater than 10 times of the concentration in the PB. The sample data was not affected.
LABORATORY CONTROL SAMPLE:	A laboratory control sample (LCS) was prepared with the analytical batch. The percent recoveries of target analytes were calculated to measure data quality in terms of accuracy.
	08-0120 - No exceedences noted.
	Comments – All percent recoveries of spiked target analytes were within the laboratory control limit (50-120%).
SURROGATES:	Four surrogate compounds were added prior to extraction, including naphthalene-d8, acenaphthene-d10, phenanthrene-d10, and benzo(a)pyrene-d12. The recovery of each surrogate compound was calculated to measure data quality in terms of accuracy (extraction efficiency).
	08-0120 – No exceedences noted.
	Comments – Percent recoveries for all surrogate compounds were within the laboratory control limits $(30 - 150\%$ recovery).
CALIBRATIONS:	The GC/MS is calibrated with a minimum of a 5 level curve. The RSD between response factors for the individual target analytes must be $\leq 25\%$. Each batch of samples analyzed is bracketed by a continuing calibration verification sample (CCV), run at a frequency of minimally every 24 hours. The PD between the initial calibration RF and the CCV should be $\leq 25\%$ for individual analytes, with a mean PD $\leq 15\%$. Additionally, an independent calibration check sample (ICC) is run immediately after each initial calibration. The percent difference between the ICC and the initial calibration should be $\leq 25\%$.
	08-0120 – No calibration exceedences noted.

Comments - None

Project Client: USACE - North Atlantic Division Project Name: Searsport Rinsate Blank Analysis Project Number: G606441-DUXCHEM

Client ID	HAC-011	
Battelle ID	Q2811-P	
Sample Type	SA	
Collection Date	05/01/08	
Extraction Date	05/08/08	
Analysis Date	05/30/08	
Analytical Instrument	MS	
% Moisture	NA	
% Lipid	NA	
Matrix	WATER	
Sample Size	1.00	
Size Unit-Basis	L_LIQUID	
Units	NG/L_LIQUID	
Naphthalene	24.66	
Acenaphthylene	5.02 U	
Acenaphthene	5.03 U	
Fluorene	5.03 U	
Anthracene	5.03 U	
Phenanthrene	3.09 J	
Fluoranthene	3.53 J	
Pyrene	2.7 J	
Benzo(a)anthracene	5.03 U	
Chrysene	1.55 J	
Benzo(b)fluoranthene	5.02 U	
Benzo(k)fluoranthene	10.03 U	
Benzo(a)pyrene	5.02 U	
Indeno(1,2,3-cd)pyrene	5.03 U	
Dibenz(a,h)anthracene	5.02 U	
Benzo(g,h,i)perylene	5.02 U	
Surrogate Recoveries (%)		

s (%) og

Naphthalene-d8	71
Acenaphthene-d10	71
Phenanthrene-d10	81
Benzo(a)pyrene-d12	70

Project Client: USACE - North Atlantic Division Project Name: Searsport Rinsate Blank Analysis Project Number: G606441-DUXCHEM

Client ID	Procedural Blank	
Battelle ID	BL793PB-P	
Sample Type	PB	
Collection Date	05/08/08	
Extraction Date	05/08/08	
Analysis Date	05/30/08	
Analytical Instrument	MS	
% Moisture	NA	
% Lipid	NA	
Matrix	WATER	
Sample Size	1.00	
Size Unit-Basis	L_LIQUID	
Units	NG/L_LIQUID	
Nanhthalene	2.2.1	
Acenanhthylene	5.02 []	
Acenaphthene	5.02 0	
Fluorene	5.03 U	
Anthracene	5.03 U	
Phenanthrene	5.02 U	
Fluoranthene	5.03 U	
Pyrene	5.03 U	
Benzo(a)anthracene	5.03 U	
Chrysene	5.03 U	
Benzo(b)fluoranthene	5.02 U	
Benzo(k)fluoranthene	10.03 U	
Benzo(a)pyrene	5.02 U	
Indeno(1,2,3-cd)pyrene	5.03 U	
Dibenz(a,h)anthracene	5.02 U	
Benzo(g,h,i)perylene	5.02 U	
Surregate Descuarios (%)		

Surrogate Recoveries (%)

Naphthalene-d8	77
Acenaphthene-d10	76
Phenanthrene-d10	81
Benzo(a)pyrene-d12	67

Project Client: USACE - North Atlantic Division Project Name: Searsport Rinsate Blank Analysis Project Number: G606441-DUXCHEM

Sample	
Battelle ID BI 794I CS-P	
Sample Type	
Collection Date 05/08/08	
Extraction Date 05/08/08	
Analysis Date 05/30/08	
Analytical Instrument MS	
% Moisture NA	
% Lipid NA	
Matrix WATER	
Sample Size 1.00	
Size Unit-Basis L LIQUID	
Units NG/L_LIQUID Target % Recovery Qualifier	
Naphthalene 281.33 500.35 56	
Acenaphthylene 294.3 500.23 59	
Acenaphthene 297.5 500.38 59	
Fluorene 313.19 500.18 63	
Anthracene 308.84 500.38 62	
Phenanthrene 336.5 500.28 67	
Fluoranthene 351.49 500.30 70	
Pyrene 346.24 500.15 69	
Benzo(a)anthracene 323.01 500.13 65	
Chrysene 357.49 500.18 71	
Benzo(b)fluoranthene 311.58 500.30 62	
Benzo(k)fluoranthene 351.95 500.30 70	
Benzo(a)pyrene 316.17 500.25 63	
Indeno(1,2,3-cd)pyrene 286.72 500.30 57	
Dibenz(a,h)anthracene 314.43 500.33 63	
Benzo(g,h,i)perylene 319.75 500.23 64	

Surrogate Recoveries (%)

Naphthalene-d8	70
Acenaphthene-d10	68
Phenanthrene-d10	75
Benzo(a)pyrene-d12	67

 Table II-2: Quality Control Summary for Analyses of Polyaromatic Hydrocarbons (PAHs) in Sediment and Rinsate Blank Samples

 Battelle Duxbury batches 08-0120 (Rinsate Blank) and 08-0150 (Sediments)

 Method Reference Number: 8270C

		Cuitonia Mat?	List nogulta antaida anitania	Logation of Degulta
Quality Control (QC)	Acceptance Criteria*	Criteria Met:	List results outside criteria	Location of Results
Element				
		Yes/No	(Cross-reference results table in data report)	(Retained at Lab or in Data Package)
Initial Calibration	Must be performed prior to the analysis of any QC sample or field sample (<25 % RSD for each compound)	Yes		In Data Package
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)	Yes		Retained at lab
Calibration Verification (Second Source)	Once, after initial calibration (<25%D)	Yes		In Data Package
Continuing Calibration	At the beginning of every 24 hour shift (<25%D for individual analytes)	Yes		In Data Package
Standard Reference Materials	+/- 30% plus variance	No	Benzo(a)pyrene was recovered below criteria in batch 08-0150.	In Data Package
Method Blank	No target analytes $> 5 \times MDL$	Yes	1	In Data Package
Matrix Spike/Matrix Spike Duplicate (MS/MSD)	One set (MS/MSD) per group of field samples. Must contain all target analytes. (Recovery Limits 50 to 120%; RPD <30%)	No	Naphthalene was recovered slightly below critiera in the MS and MSD samples in batch 08-0150.	In Data Package
Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD < 30%)	Yes		In Data Package
Surrogate Recoveries	Calculate % recovery (30 to 150% recovery)	Yes		In Data Package
Internal Standard Areas	Within 50 to 100% of internal standards in continuing calibration check	Yes		In Data Package

* The Quality Control Acceptance Criteria are general guidelines. If alternate criteria are used, they must be documented in this table.

This page intentionally left blank

Trace Metals Data

This page intentionally left blank

Analytical Chemistry Data Package Inorganics Analysis

Project: Searsport Harbor

Analysis of Metals in Sediment and Rinsate Blank Water

Battelle Project No. 54137 CF No. 2891

Marine Sciences Laboratory 1529 West Sequim Bay Road Sequim, WA 98382 (360) 681-4564

CERTIFICATION STATEMENT AND DATA RELEASE

Battelle Marine Sciences Laboratory is releasing the following data set:

SEARSPORT HARBOR SEDIMENT CHEMISTRY

METALS IN SEDIMENT AND RINSATE BLANK

We certify that the data contained within this data set is authentic:

a Step for JHB

Jill M. Brandenberger MSL Metals Chemistry Project Manager

6/20/200g

Jun

Janet Cloutier MSL QA Officer

6/20108 Date

Jill Brandenberger, Project Manager 1529 West Sequim Bay Rd. Sequim, Washington 98382 (360) 681-4564

USACE NED - Searsport Harbor Metals in Sediment Samples Received on 05/15/08 (concentrations in ug/g, dry weight)

Sponsor ID	MSL Code	Site Description	Collection Date	Percent Moisture	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg
<u> </u>			Ac RLs (Instrument: CAS Number: hieved MDL 3.18 x MDL)	<i>ICP-MS</i> 7440-38-2 0.18 0.5	<i>ICP-MS</i> 7440-43-9 0.0044 0.01	<i>ICP-OES</i> 7440-47-3 0.020 0.07	<i>ICP-OES</i> 7440-50-8 0.058 0.2	<i>ICP-OES</i> 7440-02-0 0.023 0.07	<i>ICP-OES</i> 7439-92-1 0.25 0.7	<i>ICP-OES</i> 7440-66-6 0.21 0.7	<i>TD-CVAAS</i> 7439-97-6 0.0020 0.007
HAC-012	2891-3	Reference Sediment BBDS	05/02/08	62.4	13.5	0.0860	87.4	19.6	37.6	26.4	114	0.278
HAC-012	2891-4	Reference Sediment BBDS	05/02/08	60.6	14.2	0.0000	87.4 87.1	18.8	36.8	26.8	114	0.278
HAC-014	2891-5	Reference Sediment BBDS	05/02/08	62.7	14.3	0.0887	87.0	19.5	37.7	26.6	114	0.261
HAC-015	2891-6	Reference Sediment IDS	05/02/08	64.0	12.5	0.0723	82.0	17.5	36.9	22.5	106	0.136
HAC-016	2891-7	Reference Sediment IDS	05/02/08	62.4	12.5	0.0747	85.4	17.9	36.8	22.5	109	0.150
HAC-017	2891-8	Reference Sediment IDS	05/02/08	62.1	12.4	0.0784	84.3	17.7	36.3	23.3	107	0.150
HAC-017	2891-8 DUI	P Reference Sediment IDS	05/02/08	62.1	13.0	0.0720	84.9	17.8	36.9	23.7	108	0.156
HAC-019	2891-9	Sediment from Station A,B,C	04/30/08	52.7	15.8	0.0913	81.8	17.0	36.9	18.3	97.7	0.129
HAC-020	2891-10	Sediment from Station D,F	04/30/08	57.5	18.0	0.172	75.7	16.2	34.0	15.7	89.0	0.110
HAC-021	2891-11	Sediment from Station E,G,H,I	04/30/08	42.5	14.9	0.118	63.3	15.8	30.5	11.4	65.0	0.0440
HAC-022	2891-12	Sediment from Station J	05/01/08	30.2	17.0	0.159	47.4	8.76	19.8	10.1	48.4	0.0420
Procedural B	lank_											
MB	Blank 05300	08			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U	0.7 U	0.7 U	
MB	Method Bla	nk R1										0.007 U
MB	Method Bla	nk R2										0.007 U
MB	Method Bla	nk R3										0.007 U
Laboratory C	Control Sample	(Blank Spike)										
LCS	LCS 053008	3/ LCS (Hg)			27.1	26.4	25.6	25.4	24.4	25.7	26.5	0.279
MB	Blank 05300)8/Method Blank (Hg)			0.0277 J	0.01 U	0.07 U	0.2 U	0.07 U	0.7 U	0.7 U	0.007 U
	Spike Conce	entration			25	25	25	25	25	25	25	0.281
	Percent Rec	overy			108%	106%	102%	101%	98%	103%	106%	99%
MATRIX SP	IKE RESULTS											
MS	2891-10 MS				67.4	2.14	124	65.5	78.7	60.5	185	0.664
MSD	2891-10 MS	SD			64.4	1.99	119	62.1	76.4	57.4	177	0.594
HAC-020	2891-10	Sediment from Station D F	04/30/08	57 5	18.0	0.172	75 7	16.2	34.0	15.7	89.0	0.110
11AC-020	Spike Conce	entration MS	04/30/00	51.5	10.0	1.98	17.7	10.2	47.2	17.2	94.3	0.552
	Spike Conce	entration, MSD			47.2	1.98	47.2	47.2	47.2	47.2	94.3 89.8	0.332
	Percent Rec	overv MS			105%	99%	102%	105%	95%	95%	102%	100%
	Percent Rec	overy, MSD			103%	100%	96%	102%	94%	93%	98%	100%
	RPE)			1%	1%	6%	2%	0%	2%	4%	0%

Jill Brandenberger, Project Manager 1529 West Sequim Bay Rd. Sequim, Washington 98382 (360) 681-4564

USACE NED - Searsport Harbor Metals in Sediment Samples Received on 05/15/08 (concentrations in ug/g, dry weight)

Sponsor ID	MSL Code	Site Description	Collection Date	Percent Moisture	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg
			Ach RLs (3	Instrument: CAS Number: hieved MDL 3.18 x MDL)	<i>ICP-MS</i> 7440-38-2 0.18 0.5	<i>ICP-MS</i> 7440-43-9 0.0044 0.01	<i>ICP-OES</i> 7440-47-3 0.020 0.07	<i>ICP-OES</i> 7440-50-8 0.058 0.2	<i>ICP-OES</i> 7440-02-0 0.023 0.07	<i>ICP-OES</i> 7439-92-1 0.25 0.7	<i>ICP-OES</i> 7440-66-6 0.21 0.7	<i>TD-CVAAS</i> 7439-97-6 0.0020 0.007
DUPLICATE	2891-8	Reference Sediment IDS	05/02/08	62.1	12.4	0.0784	84.3	17.7	36.3	23.3	107	0.150
HAC-017 HAC-017	2891-8 DUP	Reference Sediment IDS	05/02/08	62.1	13.0	0.0720	84.9	17.8	36.9	23.7	107	0.156
	MEAN RPD	1			12.7 5%	0.0752 9%	84.6 1%	17.7 1%	36.6 2%	23.5 2%	108 1%	0.153 4%
STANDARD	REFERENCE	MATERIAL										
SRM	1944 053008	3			18.4	8.21	221	369	63.7	298	606	3.27
	certified or r range Percent Diff	eference value erence			18.9 ±2.8 3%	8.80 ±1.4 7%	266 ±24 17%	380 REF 3%	76.1 ±5.60 16%	330 ±48.0 10%	656 ±75 8%	3.4 REF 4%

Jill Brandenberger, Project Manager 1529 West Sequim Bay Rd. Sequim, Washington 98382 (360) 681-4564

USACE NED - Searsport Harbor Metals in Rinsate Water

Samples Received on 05/07/08

(000) 000 10				(concentrations in µg/L)								
Sponsor ID	MSL Code	Site Description	Collection Date	As	Cd	Cr	Cu	Ni	Pb	Zn	Hg	
		A	Instrument: CAS Number: achieved MDL 5 (3.18 x MDL)	<i>ICP-MS</i> 7440-38-2 0.013 0.05	<i>ICP-MS</i> 7440-43-9 0.0053 0.02	<i>ICP-MS</i> 7440-47-3 0.11 0.5	<i>ICP-MS</i> 7440-50-8 0.029 0.1	<i>ICP-MS</i> 7440-02-0 0.010 0.02	<i>ICP-MS</i> 7439-92-1 0.0027 0.01	<i>ICP-MS</i> 7440-66-6 0.027 0.1	<i>CVAF</i> 7439-97-6 0.00015 0.0005	
HAC-011	2891-1	Vibracore Catcher rinsate blank	05/01/08	0.05 U	0.02 U	0.5 U	0.0354 J	0.227	0.0262	0.148 B	0.0005 U	
HAC-018	2891-2	rinsate blank	05/02/08	0.0448 J	0.02 U	0.305 J	0.0850 J	0.226	0.109	0.366	0.000736	
Procedural BlankMBRM Blank R2 or Method Blank1 (Hg)MBMethod Blank2 (Hg)MBMethod Blank3 (Hg)		Blank1 (Hg)	0.05 U 	0.02 U 	0.5 U 	0.1 U 	0.02 U 	0.01 U 	0.0437 J 	0.0005 U 0.0005 U 0.0005 U		
Laboratory C LCS LCS	<u>Control Sau</u> TRM BS OPR 051	<u>mple</u> or OPR 051908r 908run2 (Hg)	un1 (Hg)	2.08	2.10	2.05	2.07	2.05	2.14	2.55	0.00533 0.00533	
MB	RM Blank R2 or Method Blank1 (Hg) Spiking Level Percent Recovery Percent Recovery		0.05 U 2 104% NA	0.02 U 2 105% NA	0.5 U 2 102% NA	0.1 U 2 104% NA	0.02 U 2 103% NA	0.01 U 2 107% NA	0.0437 J 2 125% NA	0.0005 U 0.00496 108% 108%		
STANDARD	D REFERE	NCE MATERIA	<u>L</u>	26.8	22.2	27.0	<u>۶</u> ۲ ۵	27.2	28.7	54 4	1567	
<u>SKW</u>	certified range Percent I	or reference value	5) 2	26.67 ±0.410	23.5 22.79 ± 0.96 2%	38.6 ±1.6 2%	85.2 ± 1.2 2%	27.4 ± 0.8	20.7 27.89 ± 0.14	53.2 ± 1.1 2%	1590 ±18 1%	

Jill Brandenberger, Project Manager 1529 West Sequim Bay Road Sequim, Washington 98382 (360) 681-4564

Searsport Harbor Lab Qualifiers

- B Analyte concentration found in the sample at a concentration <5x concentration in the procedural blank.
- E Concentration exceeds the range of the calibration curve for that particular analyte.
- J Analyte detected less than the laboratory achieved reporting limit; but above the MDL
- U Not detected above the MDL; laboratory RL reported
- N Value outside accuracy or precision criteria goals.
- n QC value outside the accuracy or precision data quality objective, but meets contingency criteria.

QAPP Data Quality Objectives:

- MB < 5x MDL or < RL
- SRM Percent Difference $\leq 25\%$ of certified values, if > 10x MDL
- MS/LCS 75-125 % Recovery
- DUPS MS/MSD <30% between recoveries; sample duplicate <30% between values

Accronyms:

- CVAF Cold Vapor Atomic Fluorescence
- TD-CVAA Thermal Decomposition, Amalgamation, and Cold Vapor Atomic Absorption
- FIAS Flow Injection Atomic Spectroscopy
- ICP-MS Inductively Coupled Plasma Mass Spectrometry
- ICP-OES Inductively Coupled Plasma Optical Emissions Spectroscopy

PROJECT:	Searsport Harbor
PARAMETER:	Metals: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel
	(Ni), lead (Pb), and zinc (Zn)
LABORATORY:	Battelle Marine Sciences Laboratory (MSL), Sequim, Washington
MATRIX:	Sediment
SAMPLE CUSTODY	Six sediment samples for metals analyses were received at MSL on 05/15/08. All
AND PROCESSING:	samples were received in good condition (i.e., no sample containers were broken).
	Samples were assigned a Battelle central file (CF) identification number (2891) and
	were entered into Battelle's laboratory information management system.

The following lists information on sample receipt and processing activities:							
Lab Sample IDs:	2891*3-12						
Description:	Sediment						
Sample collection dates:	05/01/08, 05/02/08, and 04/30/08						
Laboratory arrival date:	05/15/08						
Cooler temp. on arrival:	4.4°C						
Digestion (HNO ₃ /HCl)	05/30/08						
CVAA Analysis Date (Hg)	06/10/08						
ICP-OES Analysis Date (Cr, Cu, Pb, Ni, Zn)	06/09/08						
ICP-MS Analysis Date (As, Cd)	06/05/08						

DATA QUALITY OBJECTIVES:

	Analytical	Range of	SRM	Laboratory Duplicate	RIM RL	Project MDL ⁽²⁾	Project RL ⁽³⁾
Analyte	Method	Recovery	Accuracy	Precision	(µg/g)	(µg/g)	(µg/g)
As	ICP-MS	75-125%	≤25% ⁽¹⁾	≤30%	0.4	0.18	0.5
Cd	ICP-MS	75-125%	≤25% ⁽¹⁾	≤30%	0.07	0.0044	0.01
Cr	ICP-OES	75-125%	≤25% ⁽¹⁾	≤30%	0.5	0.020	0.07
Cu	ICP-OES	75-125%	≤25% ⁽¹⁾	≤30%	0.5	0.058	0.2
	TD-		≤25% ⁽¹⁾	≤30%			0.007
Hg	CVAAS	75-125%			0.02	0.0020	
Ni	ICP-OES	75-125%	≤25% ⁽¹⁾	≤30%	0.5	0.023	0.07
Pb	ICP-OES	75-125%	≤25% ⁽¹⁾	≤30%	0.5	0.25	0.7
Zn	ICP-OES	75-125%	≤25% ⁽¹⁾	≤30%	1	0.21	0.7

(1) Evaluated for analytes >10x the MDL

(2) Reported from the Annual Sediment Method Detection Limit (MDL) Study as determined on a dry weight basis using a minimum of seven replicates of quartz sand.

(3) Reporting Limit (RL) determined as 3.18 * achieved MDL and rounded to nearest 1, 2, 5, or 7 following EPA conventions.

METHODS:Sediment samples were analyzed for eight metals: arsenic (As), cadmium (Cd), chromium
(Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn). Samples were
freeze-dried and homogenized using a ball-mill prior to digestion according to Battelle SOP
MSL-C-003, Percent Dry Weight and Homogenizing Dry Sediment, Soil and Tissue.
Sediment samples were digested in accordance with Battelle SOP MSL-I-006, Mixed Acid
Sediment Digestion. An approximately 200-mg (dry weight) aliquot of each sample was
combined with nitric and hydrochloric acids (aqua regia) in a Teflon bomb and heated in an
oven at 130°C (±10°C) for a minimum of eight hours. After heating and cooling, deionized

METHODS:	water was added to the sediment digestate to achieve analysis volume. Digested samples were submitted for analysis by three methods.
	Digested samples were analyzed for As and Cd using inductively coupled plasma-mass spectrometry (ICP-MS) according to Battelle SOP MSL-I-022, <i>Determination of Elements in Aqueous and Digestate Samples by ICP/MS</i> . The base methods for this procedure are EPA Method 1638 and EPA Method 6020 with adaptations for the analysis of trace level metals in digested sediment and tissue samples.
	Digested samples were analyzed for Cr, Cu, Ni, Pb, and Zn using inductively coupled plasma optical emissions spectroscopy (ICP-OES) according to Battelle SOP MSL-I-033, <i>Determination of Elements in Aqueous and Digestate Samples by ICP-OES</i> . This procedure is based on two methods modified and adapted for analysis of low level samples: EPA Method 6010B and 200.7.
	Dried, homogenized sediment were analyzed for total Hg by using direct thermal decomposition atomic absorption spectrometry (TD-CVAAS) according to Battelle SOP MSL-I-034, <i>Total Mercury in Tissue and Sediment by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry</i> . This procedure is based on modification of EPA Method 7473.
HOLDING TIMES:	The target holding times are one year frozen for Hg and six months for all other metals. Target holding times were achieved.
DETECTION LIMITS:	Analytical results were reported to laboratory achieved method detection limits (MDL). Achieved reporting limits (RL) were defined as 3.18*MDL and rounded to the nearest 1, 2, 5, or 7. Laboratory MDLs are determined annually and are based on a minimum of seven replicates of quartz sand. Data were evaluated and flagged in accordance with the following criteria:
	 U Not detected above the MDL; laboratory RL reported J Analyte detected less than the laboratory achieved reporting limit; but above the MDL N QC value outside the accuracy or precision criteria goal n QC value outside the accuracy or precision data quality objective, but meets contingency criteria. B Analyte concentration found in the sample at a concentration < 5x the level found in the procedural blank.
METHOD BLANKS:	A minimum of one method blank was analyzed with each analytical batch of samples. Analytes concentrations in the method blank were not detected at a level greater than RL. The data are not blank corrected.
LABORATORY CONTROL SAMPLE ACCURACY:	One laboratory control sample (LCS) was analyzed with the set of samples. The percent recoveries for the LCS were within the QC acceptance criterion of 75-125% recovery for all metals.
MATRIX SPIKE ACCURACY:	One sediment was selected for a matrix spike/matrix spike duplicate sample. The percent recoveries for the MS/MSD samples were within the QC acceptance criterion of 75-125% recovery for all metals.
DUPLICATE PRECISION:	Precision for this set of samples was assessed by the analysis of laboratory duplicates and matrix spike duplicates. Precision was expressed as the relative percent difference (RPD) of replicate results. The RPD values for the duplicates were within the QC criterion of \leq 30% RPD. The RPD values for the MS/MSD samples were within the QC criterion of \leq 20% RPD.

STANDARD REFERENCE MATERIAL ACCURACY:

SRM accuracy was expressed as the percent difference (PD) between the measured and certified or reference value for the SRM.

The SRM analyzed with this set of sediment samples was SRM 1944 New York/New Jersey Waterway Sediment. This SRM is certified for all metals except Cu and Hg. The reference values are reported for evaluation purposes. The percent differences from the certified or reference values were within the QC acceptance criterion of PD \leq 25% for all metals.

PROJECT:	Searsport Harbor
PARAMETER:	Metals: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn)
LABORATORY:	Battelle Marine Sciences Laboratory (MSL), Sequim, Washington
MATRIX:	Rinsate Blanks
SAMPLE CUSTODY AND PROCESSING:	Two rinsate blank for metals analyses were received at MSL on 05/07/08. The samples were received in good condition (i.e., no sample containers were broken), assigned a Battelle central file (CF) identification number (2891), and entered into Battelle's laboratory information management system. The samples were received at MSL already preserved (per COC). Preservation vials were supplied to the field team and contained double distilled nitric acid to preserve each sample to a pH of < 2.0. A random check of the samples confirmed the pH was < 2.0.

The following lists information on sample receipt and processing activ							
La	b Sample IDs:	2891*1-2					
	Description:	Rinsate Blanks					
Sample collection dates:		05/01/08 and 05/02/08					
Laboratory arrival date:		05/07/08					
Cooler temp. on arrival:		5.0°C					
CVAF Analysis Date: (Hg)		05/20/08					
ICP-MS Analysis Date: (As, Cd, Cr, Cu, Pb, Ni,	Zn)	05/14/08					

OA/OC DATA OUALITY OBJECTIVES:

		MS	SRM		NED	Lab	Lab
Analyte	Analytical Method for Freshwater	Range of Recovery	Percent Difference ¹	Replicate Precision	<u>Reporting</u> <u>Limits</u> (µg/L)	<u>Detection</u> <u>Limits</u> (µg/L) ²	<u>Reporting</u> <u>Limits</u> (µg/L) ³
Arsenic	ICP-MS	75-125%	≤25%	≤30%	1	0.013	0.05
Cadmium	ICP-MS	75-125%	≤25%	≤30%	1	0.0053	0.02
Chromium	ICP-MS	75-125%	≤25%	≤30%	1	0.11	0.5
Copper	ICP-MS	75-125%	≤25%	≤30%	0.6	0.029	0.1
Mercury	CVAF	75-125%	≤25%	≤30%	0.4	0.00015	0.0005
Nickel	ICP-MS	75-125%	≤25%	≤30%	1	0.010	0.02
Lead	ICP-MS	75-125%	≤25%	≤30%	1	0.0027	0.01
Zinc	ICP-MS	75-125%	≤25%	≤30%	1	0.027	0.1

Evaluated for analytes >10x the MDL 2

Reported from the Water Method Detection Limit (MDL) Study as determined using a minimum of seven replicates of spiked DI water. 3

Lab Reporting Limit (RL) determined as 3.18 * achieved MDL.

METHODS:

The equipment rinsate blank was analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), and zinc (Zn). The samples were submitted for analyses by two methods.

Samples were analyzed for total Hg by cold vapor atomic fluorescence (CVAF) in accordance with Battelle SOP MSL-I-013; Total Mercury in Aqueous Samples by CVAF based on EPA Method 1631 Revision E.

The samples were analyzed for all other metals by inductively coupled plasma-mass

	spectrometry (ICP-MS) following Battelle SOP MSL-I-022, <i>Determination of Elements in Aqueous and Digestate Samples by ICP-MS</i> . Samples were acid solubilized prior to analysis by ICP-MS in accordance with the total recoverable metals (TRM) method in Battelle SOP MSL-I-022. The analysis guidelines for this procedure are adapted from USEPA Method 1638 <i>Determination of Trace Elements in Ambient Waters by Inductively Coupled Plasma-Mass Spectrometry</i> . The TRM methodology is adapted from USEPA Method 1640 - <i>Determination of Trace Elements in Ambient Waters by On-Line Chelation Preconcentration and Inductively Coupled Plasma-Mass Spectrometry</i> .						
	All data are reported in units of $\mu g/L$ for each sample.						
HOLDING TIMES:	Established holding times of 90 days for Hg and six months for trace metals were achieved.						
DETECTION LIMITS:	Laboratory achieved detection limit are reported from the annual MDL study for freshwater. The reporting limits provided are determined as 3.18 times the laboratory achieved MDL and rounded to the nearest 1, 2, 5, or 7. Data were evaluated and flagged to the following criteria:						
	 U Not detected above the MDL; laboratory RL reported J Analyte detected less than the laboratory achieved reporting limit; but above the MDL N QC value outside the accuracy or precision criteria goal n QC value outside the accuracy or precision data quality objective, but meets contingency criteria. B Analyte concentration found in the sample at a concentration < 5x the level found in the procedural blank. 						
METHOD BLANKS:	A minimum of one method blank was analyzed with each batch of samples. Method blank concentrations were less than the RL for all metals. Samples were not blank corrected.						
BLANK SPIKE /LABORATORY CONTROL SAMPLES:	A minimum of one laboratory control sample (LCS) or ongoing precision and recovery (OPR) sample was prepared and analyzed with this batch of samples. Percent recoveries for the LCS sample were within the QC acceptance criteria of 75% to 125% for all metals.						
MATRIX SPIKE ACCURACY:	The sample matrix for rinsate blanks is deionized water; therefore the LCS sample serves as a matrix spike (MS).						
STANDARD REFERENCE MATERIAL	Two standard reference materials were analyzed with this batch of samples. SRM 1641d for Hg and SRM 1640 for metals analyzed by ICP-MS. Accuracy for SRMs was expressed as the percent difference (PD) between the measured and certified values.						
ACCURACI:	One replicate of SRM 1641d for Hg was analyzed with this batch of samples. The percent difference for the SRM recovery was 1% and within the QC acceptance criterion of $\pm 25\%$.						
	One replicate of SRM 1640 was analyzed with this batch of samples. The percent differences were within the QC acceptance criterion of $\pm 25\%$ difference for all metal.						

Battelle Marine Science Laboratory

Method Detection Limit Study Summary Date: 6/18/2008

MATRIX: QUARTZ SAND PREPARATION METHOD: Aqua Regia UNITS: µg/g dry weight

	As	Cd	Cr	Cu	Hg	Ni	Pb	Zn
Instrument:	ICP-MS	ICP-MS	ICP-OES	ICP-OES	TD-CVAAS	ICP-OES	ICP-OES	ICP-OES
Analysis Date:	4/29/2008	4/29/2008	5/27/2008	5/27/2008	3/3/2008	5/27/2008	5/27/2008	5/27/2008
CAS Code:	7440-38-2	7440-43-9	7440-47-3	7440-50-8	7439-97-6	7440-02-0	7439-92-1	7440-66-6
MDI 1	0.096	0.0227	0.115	0 134	0.0256	0.0952	1 12	1 10
MDL 2	0.196	0.0234	0.122	0.078	0.0266	0.112	1.02	1.09
MDL 3	0.198	0.0261	0.116	0.127	0.0268	0.0948	0.961	1.12
MDL 4	0.160	0.0220	0.109	0.137	0.0260	0.116	0.939	1.10
MDL 5	0.079	0.0234	0.120	0.113	0.0262	0.0991	1.01	1.18
MDL 6	0.113	0.0215	0.104	0.121	0.0271	0.102	1.05	1.05
MDL 7	0.214	0.0226	0.106	0.122	0.0272	0.107	0.967	0.970
MDL 8	0.241	0.0217	0.109	0.102	0.0254	0.100	0.840	
MEAN	0.162	0.0229	0.113	0.117	0.0264	0.103	0.987	1.09
STDEV	0.0598	0.00148	0.00652	0.0192	0.00067	0.00783	0.0820	0.065
student-t value	2.998	2.998	2.998	2.998	2.998	2.998	2.998	3.143
MDL	0.18	0.0044	0.020	0.058	0.0020	0.023	0.25	0.21
RL	0.5	0.01	0.07	0.2	0.007	0.07	0.7	0.7

ICP-MS - Inductively Coupled Plasma Mass Spectrometry

CVAA = Cold Vapor Atomic Absorption Spectroscopy

ICP-OES = Inductively Coupled Plasma Optical Emissions Spectroscopy

RL = Reporting Limit (RL) determined as 3.18 * achieved MDL and rounded to nearest 1, 2, 5, or 7 following EPA conventions

Battelle Marine Science Laboratory

Method Detection Limit Study Summary Date: 6/18/2008

MATRIX: Freshwater PREPARATION METHOD: Total Recoverable Metals (TRM) UNITS: µg/L

•	Ag	As	Cd	Cr	Cu	Hg	Ni	Pb	Se	Zn
Instrument:	ICP-MS	ICP-MS	ICP-MS	ICP-MS	ICP-MS	CVAF	ICP-MS	ICP-MS	FIAS	ICP-MS
Analysis Date:	3/4/2008	3/4/2008	3/4/2008	3/4/2008	3/4/2008	2/1/2008	3/4/2008	3/4/2008	4/8/2008	3/4/2008
CAS Code:	7440-22-4	7440-38-2	7440-43-9	7440-47-3	7440-50-8	7439-97-6	7440-02-0	7439-92-1	7782-49-2	7440-66-6
MDL 1	0.0292	0.0239	0.0301	0.550	0.518	0.000706	0.0357	0.0319	0.414	0.496
MDL 2	0.0321	0.0234	0.0318	0.544	0.493	0.000640	0.0311	0.0329	0.403	0.504
MDL 3	0.0345	0.0272	0.0339	0.552	0.508	0.000588	0.0270	0.0336	0.413	0.499
MDL 4	0.0330	0.0336	0.0279	0.548	0.514	0.000641	0.0328	0.0328	0.384	0.493
MDL 5	0.0337	0.0199	0.0295	0.639	0.495	0.000599	0.0338	0.0316	0.393	0.498
MDL 6	0.0304	0.0211	0.0294	0.568	0.512	0.000627	0.0276	0.0339	0.385	0.506
MDL 7	0.0322	0.0267	0.0302	0.518	0.515	0.000536	0.0347	0.0322	0.423	0.484
MDL 8	0.0318	0.0228	0.0299	0.551	0.517	0.000663	0.0336	0.0314	0.353	0.480
MEAN	0.0321	0.0248	0.0303	0.559	0.509	0.000625	0.0320	0.0325	0.396	0.495
STDEV	0.00169	0.00433	0.00178	0.0353	0.0098	0.0000514	0.00324	0.00090	0.0224	0.0089
student-t value	2.998	2.998	2.998	2.998	2.998	2.998	2.998	2.998	2.998	2.998
MDL	0.0051	0.013	0.0053	0.11	0.029	0.00015	0.010	0.0027	0.0671	0.027
RL	0.02	0.05	0.02	0.5	0.1	0.0005	0.02	0.01	0.2	0.1

FIAS = Flow Injection Atomic Spectroscopy (Hydride Generation)

ICP-MS - Inductively Coupled Plasma Mass Spectrometry

CVAF = Cold Vapor Atomic Fluorescence

RL = Reporting Limit (RL) determined as 3.18 * achieved MDL and rounded to nearest 1, 2, 5, or 7 following EPA conventions

Table II-5: Quality Control Summary for Analyses of Metals in Sediments, Tissue and Water Matrices

USACE NED - Searsport Harbor

Method Reference Numbers: Various Reference Numbers

Quality Control (QC)	Acceptance Criteria*	Criteria Met?	List results outside criteria	Location of Results	
Element	'	Yes/No	(Cross-reference results table	(Retained at Lab or	
			in data report)	in Data Package)	
Linear Range Determination for ICP	Performed Quarterly (NOTE: MSL performs daily for ICP-MS)	Yes		Retained at Lab	
Initial Calibration for ICP-MS, ICP- OES, and Hg	Performed Daily (Correlation Coefficient <u>></u> 0.995)	Yes		Retained at Lab	
Calculation of Method Detection Limits (MDLs)	For each matrix, analyzed once per 12 month period (see Section 5.2 for MDL procedure)	Yes		In Data Package	
Initial Calibration Verification/ Continuing Calibration Verification	Hg: 80 to 120% recovery Other metals: 90 to 110% recovery	No	One As CCV (111%) - prior CCV and following CCV were both acceptable.	Retained at Lab	
Initial Calibration Blank/ Continuing Calibration Blank	No target analytes > Instrument Detection Limit	Yes		Retained at Lab	
Standard Reference Materials	±25% percent difference from certified value if certified greater than 10x MDL	Yes		In Data Package	
Method Blank	No target analytes > RL	Yes		In Data Package	
Sample Spike/ Sample Duplicate	One set per group of field samples. Must contain all target analytes. Recovery Limits (75 to 125%; RPD < 30%)	Yes		In Data Package	
Analytical Replicates	Analyze one sample in duplicate for each group of field samples (RPD < 30%)	Yes		In Data Package	

* The Quality Control Acceptance Criteria are available in the SAP Searsport Harbor.
ATTACHMENT D

COMPLETENESS CHECKLIST

This page left intentionally blank

Table II-1: Completeness Checklist

Quality Assurance/Quality Control Questions	Yes/No? Comments?
1. Was the report signed by the responsible applicant approved representative:	Yes
2. Were the methods for sampling, chemical and biological testing described in the	
Sampling and Analysis Plan (SAP) and the Laboratory QA Plan (LQAP) followed:	Yes, except for deviations noted in Section 2.3.5 of the Data Report.
3. If not, were deviations documented?	Yes (see Section 2.3.5 of data report).
4. Was the SAP approved by the New England District?	Yes
5. Did the applicant use a laboratory with a LQAP on file at the New England District	Yes
6. Did the samples adequately represent the physical/chemical variability in the dredgin	<u>e</u>
area?	Yes
7. Were the correct stations sampled (include the precision of the navigation method	
used)?	Yes
8. Were the preservation and storage requirements in Chapter 8 of the EPA/Corps	
QA/QC Manual (EPA/USACE 1995) and EPA (2001d) followed?	Yes
9. Were the samples properly labeled:	Yes
10. Were all the requested data included?	Yes
11. Were the reporting limits met?	Yes, except for arsenic, lead, and toxaphene. Laboratory achieved MDLs were all well below the required RLs
12. Were the chain-of-custody forms properly processed?	Yes
13. Were the method blanks run and were the concentration below the acceptance	
criteria?	Yes
14. Was the MDL study performed on each matrix (with this data submission) or within	
the last 12 months?	Yes
15. Were the SRM/CRM analyses within acceptance criteria?	Yes, except for PCB 209 and benzo(a)pyrene.
16. Were the matrix spike/matrix spike duplicates run at the required frequency and was	
the percent recovery/RPD within the acceptance criteria?	Yes, except for naphthalene.
17. Were the duplicate samples analyzed and were the RPDs within the required	
acceptance criteria?	Yes
18. For each analytical fraction of organic compounds, were recoveries for the internal	
standard within the acceptance criteria?	Yes
19. Were surrogate recoveries within the required acceptance criteria	Yes
20. Were corrective action forms provided for all non-conforming data?	Yes
21. Were all the species-specific test conditions in Appendix V met?	NA
22. Were the test-specific age requirements met for each test species	NA
23. Was the bulk physical/chemical testing performed on the sediments/composites that	
were biologically tested?	NA
24. Were the mortality acceptance criteria met for the water column and sediment	
toxicity tests?	NA
25. Were the test performance requirements in Table 11.3 of EPA (1994a) met	NA

[This page left intentionally blank]